autogen/dotnet/website/articles/Function-call-with-ollama-and-litellm.md

93 lines
4.6 KiB
Markdown
Raw Permalink Normal View History

This example shows how to use function call with local LLM models where [Ollama](https://ollama.com/) as local model provider and [LiteLLM](https://docs.litellm.ai/docs/) proxy server which provides an openai-api compatible interface.
[![](https://img.shields.io/badge/Open%20on%20Github-grey?logo=github)](https://github.com/microsoft/autogen/blob/main/dotnet/samples/AutoGen.OpenAI.Sample/Tool_Call_With_Ollama_And_LiteLLM.cs)
To run this example, the following prerequisites are required:
- Install [Ollama](https://ollama.com/) and [LiteLLM](https://docs.litellm.ai/docs/) on your local machine.
- A local model that supports function call. In this example `dolphincoder:latest` is used.
## Install Ollama and pull `dolphincoder:latest` model
First, install Ollama by following the instructions on the [Ollama website](https://ollama.com/).
After installing Ollama, pull the `dolphincoder:latest` model by running the following command:
```bash
ollama pull dolphincoder:latest
```
## Install LiteLLM and start the proxy server
You can install LiteLLM by following the instructions on the [LiteLLM website](https://docs.litellm.ai/docs/).
```bash
pip install 'litellm[proxy]'
```
Then, start the proxy server by running the following command:
```bash
litellm --model ollama_chat/dolphincoder --port 4000
```
This will start an openai-api compatible proxy server at `http://localhost:4000`. You can verify if the server is running by observing the following output in the terminal:
```bash
#------------------------------------------------------------#
# #
# 'The worst thing about this product is...' #
# https://github.com/BerriAI/litellm/issues/new #
# #
#------------------------------------------------------------#
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:4000 (Press CTRL+C to quit)
```
## Install AutoGen and AutoGen.SourceGenerator
In your project, install the AutoGen and AutoGen.SourceGenerator package using the following command:
```bash
dotnet add package AutoGen
dotnet add package AutoGen.SourceGenerator
```
The `AutoGen.SourceGenerator` package is used to automatically generate type-safe `FunctionContract` instead of manually defining them. For more information, please check out [Create type-safe function](Create-type-safe-function-call.md).
And in your project file, enable structural xml document support by setting the `GenerateDocumentationFile` property to `true`:
```xml
<PropertyGroup>
<!-- This enables structural xml document support -->
<GenerateDocumentationFile>true</GenerateDocumentationFile>
</PropertyGroup>
```
## Define `WeatherReport` function and create @AutoGen.Core.FunctionCallMiddleware
Create a `public partial` class to host the methods you want to use in AutoGen agents. The method has to be a `public` instance method and its return type must be `Task<string>`. After the methods are defined, mark them with `AutoGen.Core.FunctionAttribute` attribute.
[!code-csharp[Define WeatherReport function](../../samples/AutoGen.OpenAI.Sample/Tool_Call_With_Ollama_And_LiteLLM.cs?name=Function)]
Then create a @AutoGen.Core.FunctionCallMiddleware and add the `WeatherReport` function to the middleware. The middleware will pass the `FunctionContract` to the agent when generating a response, and process the tool call response when receiving a `ToolCallMessage`.
[!code-csharp[Define WeatherReport function](../../samples/AutoGen.OpenAI.Sample/Tool_Call_With_Ollama_And_LiteLLM.cs?name=Create_tools)]
## Create @AutoGen.OpenAI.OpenAIChatAgent with `GetWeatherReport` tool and chat with it
Because LiteLLM proxy server is openai-api compatible, we can use @AutoGen.OpenAI.OpenAIChatAgent to connect to it as a third-party openai-api provider. The agent is also registered with a @AutoGen.Core.FunctionCallMiddleware which contains the `WeatherReport` tool. Therefore, the agent can call the `WeatherReport` tool when generating a response.
[!code-csharp[Create an agent with tools](../../samples/AutoGen.OpenAI.Sample/Tool_Call_With_Ollama_And_LiteLLM.cs?name=Create_Agent)]
The reply from the agent will similar to the following:
```bash
AggregateMessage from assistant
--------------------
ToolCallMessage:
ToolCallMessage from assistant
--------------------
- GetWeatherAsync: {"city": "new york"}
--------------------
ToolCallResultMessage:
ToolCallResultMessage from assistant
--------------------
- GetWeatherAsync: The weather in new york is 72 degrees and sunny.
--------------------
```