autogen/test/agentchat/test_conversable_agent.py

1002 lines
38 KiB
Python
Raw Normal View History

import asyncio
import copy
import sys
import time
from typing import Any, Callable, Dict, Literal
import unittest
import inspect
import pytest
from unittest.mock import patch
from pydantic import BaseModel, Field
from typing_extensions import Annotated
import autogen
from autogen.agentchat import ConversableAgent, UserProxyAgent
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
from conftest import skip_openai
try:
import openai
except ImportError:
skip = True
else:
skip = False or skip_openai
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
@pytest.fixture
def conversable_agent():
return ConversableAgent(
"conversable_agent_0",
max_consecutive_auto_reply=10,
code_execution_config=False,
llm_config=False,
human_input_mode="NEVER",
)
def test_sync_trigger():
agent = ConversableAgent("a0", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent.register_reply(agent1, lambda recipient, messages, sender, config: (True, "hello"))
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello"
agent.register_reply("a1", lambda recipient, messages, sender, config: (True, "hello a1"))
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a1"
agent.register_reply(
ConversableAgent, lambda recipient, messages, sender, config: (True, "hello conversable agent")
)
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello conversable agent"
agent.register_reply(
lambda sender: sender.name.startswith("a"), lambda recipient, messages, sender, config: (True, "hello a")
)
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a"
agent.register_reply(
lambda sender: sender.name.startswith("b"), lambda recipient, messages, sender, config: (True, "hello b")
)
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a"
agent.register_reply(
["agent2", agent1], lambda recipient, messages, sender, config: (True, "hello agent2 or agent1")
)
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello agent2 or agent1"
agent.register_reply(
["agent2", "agent3"], lambda recipient, messages, sender, config: (True, "hello agent2 or agent3")
)
agent1.initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello agent2 or agent1"
pytest.raises(ValueError, agent.register_reply, 1, lambda recipient, messages, sender, config: (True, "hi"))
pytest.raises(ValueError, agent._match_trigger, 1, agent1)
@pytest.mark.asyncio
async def test_async_trigger():
agent = ConversableAgent("a0", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
async def a_reply(recipient, messages, sender, config):
print("hello from a_reply")
return (True, "hello")
agent.register_reply(agent1, a_reply)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello"
async def a_reply_a1(recipient, messages, sender, config):
print("hello from a_reply_a1")
return (True, "hello a1")
agent.register_reply("a1", a_reply_a1)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a1"
async def a_reply_conversable_agent(recipient, messages, sender, config):
print("hello from a_reply_conversable_agent")
return (True, "hello conversable agent")
agent.register_reply(ConversableAgent, a_reply_conversable_agent)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello conversable agent"
async def a_reply_a(recipient, messages, sender, config):
print("hello from a_reply_a")
return (True, "hello a")
agent.register_reply(lambda sender: sender.name.startswith("a"), a_reply_a)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a"
async def a_reply_b(recipient, messages, sender, config):
print("hello from a_reply_b")
return (True, "hello b")
agent.register_reply(lambda sender: sender.name.startswith("b"), a_reply_b)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello a"
async def a_reply_agent2_or_agent1(recipient, messages, sender, config):
print("hello from a_reply_agent2_or_agent1")
return (True, "hello agent2 or agent1")
agent.register_reply(["agent2", agent1], a_reply_agent2_or_agent1)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello agent2 or agent1"
async def a_reply_agent2_or_agent3(recipient, messages, sender, config):
print("hello from a_reply_agent2_or_agent3")
return (True, "hello agent2 or agent3")
agent.register_reply(["agent2", "agent3"], a_reply_agent2_or_agent3)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello agent2 or agent1"
with pytest.raises(ValueError):
agent.register_reply(1, a_reply)
with pytest.raises(ValueError):
agent._match_trigger(1, agent1)
def test_async_trigger_in_sync_chat():
agent = ConversableAgent("a0", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent2 = ConversableAgent("a2", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
reply_mock = unittest.mock.MagicMock()
async def a_reply(recipient, messages, sender, config):
reply_mock()
print("hello from a_reply")
return (True, "hello from reply function")
agent.register_reply(agent1, a_reply)
with pytest.raises(RuntimeError) as e:
agent1.initiate_chat(agent, message="hi")
assert (
e.value.args[0] == "Async reply functions can only be used with ConversableAgent.a_initiate_chat(). "
"The following async reply functions are found: a_reply"
)
agent2.register_reply(agent1, a_reply, ignore_async_in_sync_chat=True)
reply_mock.assert_not_called()
@pytest.mark.asyncio
async def test_sync_trigger_in_async_chat():
agent = ConversableAgent("a0", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
def a_reply(recipient, messages, sender, config):
print("hello from a_reply")
return (True, "hello from reply function")
agent.register_reply(agent1, a_reply)
await agent1.a_initiate_chat(agent, message="hi")
assert agent1.last_message(agent)["content"] == "hello from reply function"
def test_context():
agent = ConversableAgent("a0", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
agent1.send(
{
"content": "hello {name}",
"context": {
"name": "there",
},
},
agent,
)
# expect hello {name} to be printed
agent1.send(
{
"content": lambda context: f"hello {context['name']}",
"context": {
"name": "there",
},
},
agent,
)
# expect hello there to be printed
agent.llm_config = {"allow_format_str_template": True}
agent1.send(
{
"content": "hello {name}",
"context": {
"name": "there",
},
},
agent,
)
# expect hello there to be printed
def test_generate_code_execution_reply():
agent = ConversableAgent(
"a0", max_consecutive_auto_reply=10, code_execution_config=False, llm_config=False, human_input_mode="NEVER"
)
dummy_messages = [
{
"content": "no code block",
"role": "user",
},
{
"content": "no code block",
"role": "user",
},
]
code_message = {
"content": '```python\nprint("hello world")\n```',
"role": "user",
}
# scenario 1: if code_execution_config is not provided, the code execution should return false, none
assert agent.generate_code_execution_reply(dummy_messages, config=False) == (False, None)
# scenario 2: if code_execution_config is provided, but no code block is found, the code execution should return false, none
assert agent.generate_code_execution_reply(dummy_messages, config={}) == (False, None)
# scenario 3: if code_execution_config is provided, and code block is found, but it's not within the range of last_n_messages, the code execution should return false, none
assert agent.generate_code_execution_reply([code_message] + dummy_messages, config={"last_n_messages": 1}) == (
False,
None,
)
# scenario 4: if code_execution_config is provided, and code block is found, and it's within the range of last_n_messages, the code execution should return true, code block
agent._code_execution_config = {"last_n_messages": 3, "use_docker": False}
assert agent.generate_code_execution_reply([code_message] + dummy_messages) == (
True,
"exitcode: 0 (execution succeeded)\nCode output: \nhello world\n",
)
assert agent._code_execution_config["last_n_messages"] == 3
# scenario 5: if last_n_messages is set to 'auto' and no code is found, then nothing breaks both when an assistant message is and isn't present
assistant_message_for_auto = {
"content": "This is me! The assistant!",
"role": "assistant",
}
dummy_messages_for_auto = []
for i in range(3):
dummy_messages_for_auto.append(
{
"content": "no code block",
"role": "user",
}
)
# Without an assistant present
agent._code_execution_config = {"last_n_messages": "auto", "use_docker": False}
assert agent.generate_code_execution_reply(dummy_messages_for_auto) == (
False,
None,
)
# With an assistant message present
agent._code_execution_config = {"last_n_messages": "auto", "use_docker": False}
assert agent.generate_code_execution_reply([assistant_message_for_auto] + dummy_messages_for_auto) == (
False,
None,
)
# scenario 6: if last_n_messages is set to 'auto' and code is found, then we execute it correctly
dummy_messages_for_auto = []
for i in range(4):
# Without an assistant present
agent._code_execution_config = {"last_n_messages": "auto", "use_docker": False}
assert agent.generate_code_execution_reply([code_message] + dummy_messages_for_auto) == (
True,
"exitcode: 0 (execution succeeded)\nCode output: \nhello world\n",
)
# With an assistant message present
agent._code_execution_config = {"last_n_messages": "auto", "use_docker": False}
assert agent.generate_code_execution_reply(
[assistant_message_for_auto] + [code_message] + dummy_messages_for_auto
) == (
True,
"exitcode: 0 (execution succeeded)\nCode output: \nhello world\n",
)
dummy_messages_for_auto.append(
{
"content": "no code block",
"role": "user",
}
)
# scenario 7: if last_n_messages is set to 'auto' and code is present, but not before an assistant message, then nothing happens
agent._code_execution_config = {"last_n_messages": "auto", "use_docker": False}
assert agent.generate_code_execution_reply(
[code_message] + [assistant_message_for_auto] + dummy_messages_for_auto
) == (
False,
None,
)
assert agent._code_execution_config["last_n_messages"] == "auto"
# scenario 8: if last_n_messages is misconfigures, we expect to see an error
with pytest.raises(ValueError):
agent._code_execution_config = {"last_n_messages": -1, "use_docker": False}
agent.generate_code_execution_reply([code_message])
with pytest.raises(ValueError):
agent._code_execution_config = {"last_n_messages": "hello world", "use_docker": False}
agent.generate_code_execution_reply([code_message])
def test_max_consecutive_auto_reply():
agent = ConversableAgent("a0", max_consecutive_auto_reply=2, llm_config=False, human_input_mode="NEVER")
agent1 = ConversableAgent("a1", max_consecutive_auto_reply=0, llm_config=False, human_input_mode="NEVER")
assert agent.max_consecutive_auto_reply() == agent.max_consecutive_auto_reply(agent1) == 2
agent.update_max_consecutive_auto_reply(1)
assert agent.max_consecutive_auto_reply() == agent.max_consecutive_auto_reply(agent1) == 1
agent1.initiate_chat(agent, message="hello")
assert agent._consecutive_auto_reply_counter[agent1] == 1
agent1.initiate_chat(agent, message="hello again")
# with auto reply because the counter is reset
assert agent1.last_message(agent)["role"] == "user"
assert len(agent1.chat_messages[agent]) == 2
assert len(agent.chat_messages[agent1]) == 2
assert agent._consecutive_auto_reply_counter[agent1] == 1
agent1.send(message="bye", recipient=agent)
# no auto reply
assert agent1.last_message(agent)["role"] == "assistant"
agent1.initiate_chat(agent, clear_history=False, message="hi")
assert len(agent1.chat_messages[agent]) > 2
assert len(agent.chat_messages[agent1]) > 2
assert agent1.reply_at_receive[agent] == agent.reply_at_receive[agent1] is True
agent1.stop_reply_at_receive(agent)
assert agent1.reply_at_receive[agent] is False and agent.reply_at_receive[agent1] is True
def test_conversable_agent():
dummy_agent_1 = ConversableAgent(name="dummy_agent_1", llm_config=False, human_input_mode="ALWAYS")
dummy_agent_2 = ConversableAgent(name="dummy_agent_2", llm_config=False, human_input_mode="TERMINATE")
# monkeypatch.setattr(sys, "stdin", StringIO("exit"))
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
dummy_agent_1.receive("hello", dummy_agent_2) # receive a str
# monkeypatch.setattr(sys, "stdin", StringIO("TERMINATE\n\n"))
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
dummy_agent_1.receive(
{
raise error when msg is invalid; fix docstr; improve ResponsiveAgent; update doc and packaging; capture ipython output; find code blocks with llm when regex fails. (#1154) * autogen.agent -> autogen.agentchat * bug fix in portfolio * notebook * timeout * timeout * infer lang; close #1150 * timeout * message context * context handling * add sender to generate_reply * clean up the receive function * move mathchat to contrib * contrib * last_message * Add OptiGuide: agent and notebook * Optiguide notebook: add figures and URL 1. figures and code points to remote URL 2. simplify the prompt for the interpreter, because all information is already in the chat history. * Update name: Agent -> GenericAgent * Update notebook * Rename: GenericAgent -> ResponsiveAgent * Rebase to autogen.agentchat * OptiGuide: Comment, sytle, and notebook updates * simplify optiguide * raise error when msg is invalid; fix docstr * allow return None for generate_reply() * update_system_message * test update_system_message * simplify optiguide * simplify optiguide * simplify optiguide * simplify optiguide * move test * add test and fix bug * doc update * doc update * doc update * color * optiguide * prompt * test danger case * packaging * docker * remove path in traceback * capture ipython output * simplify * find code blocks with llm * find code with llm * order * order * fix bug in context handling * print executing msg * print executing msg * test find code * test find code * disable find_code * default_auto_reply * default auto reply * remove optiguide * remove -e --------- Co-authored-by: Beibin Li <beibin79@gmail.com>
2023-07-31 19:22:30 -07:00
"content": "hello {name}",
"context": {
"name": "dummy_agent_2",
},
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
},
dummy_agent_2,
) # receive a dict
assert "context" in dummy_agent_1.chat_messages[dummy_agent_2][-1]
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
# receive dict without openai fields to be printed, such as "content", 'function_call'. There should be no error raised.
pre_len = len(dummy_agent_1.chat_messages[dummy_agent_2])
raise error when msg is invalid; fix docstr; improve ResponsiveAgent; update doc and packaging; capture ipython output; find code blocks with llm when regex fails. (#1154) * autogen.agent -> autogen.agentchat * bug fix in portfolio * notebook * timeout * timeout * infer lang; close #1150 * timeout * message context * context handling * add sender to generate_reply * clean up the receive function * move mathchat to contrib * contrib * last_message * Add OptiGuide: agent and notebook * Optiguide notebook: add figures and URL 1. figures and code points to remote URL 2. simplify the prompt for the interpreter, because all information is already in the chat history. * Update name: Agent -> GenericAgent * Update notebook * Rename: GenericAgent -> ResponsiveAgent * Rebase to autogen.agentchat * OptiGuide: Comment, sytle, and notebook updates * simplify optiguide * raise error when msg is invalid; fix docstr * allow return None for generate_reply() * update_system_message * test update_system_message * simplify optiguide * simplify optiguide * simplify optiguide * simplify optiguide * move test * add test and fix bug * doc update * doc update * doc update * color * optiguide * prompt * test danger case * packaging * docker * remove path in traceback * capture ipython output * simplify * find code blocks with llm * find code with llm * order * order * fix bug in context handling * print executing msg * print executing msg * test find code * test find code * disable find_code * default_auto_reply * default auto reply * remove optiguide * remove -e --------- Co-authored-by: Beibin Li <beibin79@gmail.com>
2023-07-31 19:22:30 -07:00
with pytest.raises(ValueError):
dummy_agent_1.receive({"message": "hello"}, dummy_agent_2)
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
assert pre_len == len(
dummy_agent_1.chat_messages[dummy_agent_2]
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
), "When the message is not an valid openai message, it should not be appended to the oai conversation."
# monkeypatch.setattr(sys, "stdin", StringIO("exit"))
dummy_agent_1.send("TERMINATE", dummy_agent_2) # send a str
# monkeypatch.setattr(sys, "stdin", StringIO("exit"))
dummy_agent_1.send(
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
{
"content": "TERMINATE",
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
},
dummy_agent_2,
) # send a dict
# send dict with no openai fields
pre_len = len(dummy_agent_1.chat_messages[dummy_agent_2])
with pytest.raises(ValueError):
dummy_agent_1.send({"message": "hello"}, dummy_agent_2)
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
assert pre_len == len(
dummy_agent_1.chat_messages[dummy_agent_2]
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
), "When the message is not a valid openai message, it should not be appended to the oai conversation."
raise error when msg is invalid; fix docstr; improve ResponsiveAgent; update doc and packaging; capture ipython output; find code blocks with llm when regex fails. (#1154) * autogen.agent -> autogen.agentchat * bug fix in portfolio * notebook * timeout * timeout * infer lang; close #1150 * timeout * message context * context handling * add sender to generate_reply * clean up the receive function * move mathchat to contrib * contrib * last_message * Add OptiGuide: agent and notebook * Optiguide notebook: add figures and URL 1. figures and code points to remote URL 2. simplify the prompt for the interpreter, because all information is already in the chat history. * Update name: Agent -> GenericAgent * Update notebook * Rename: GenericAgent -> ResponsiveAgent * Rebase to autogen.agentchat * OptiGuide: Comment, sytle, and notebook updates * simplify optiguide * raise error when msg is invalid; fix docstr * allow return None for generate_reply() * update_system_message * test update_system_message * simplify optiguide * simplify optiguide * simplify optiguide * simplify optiguide * move test * add test and fix bug * doc update * doc update * doc update * color * optiguide * prompt * test danger case * packaging * docker * remove path in traceback * capture ipython output * simplify * find code blocks with llm * find code with llm * order * order * fix bug in context handling * print executing msg * print executing msg * test find code * test find code * disable find_code * default_auto_reply * default auto reply * remove optiguide * remove -e --------- Co-authored-by: Beibin Li <beibin79@gmail.com>
2023-07-31 19:22:30 -07:00
# update system message
dummy_agent_1.update_system_message("new system message")
assert dummy_agent_1.system_message == "new system message"
raise error when msg is invalid; fix docstr; improve ResponsiveAgent; update doc and packaging; capture ipython output; find code blocks with llm when regex fails. (#1154) * autogen.agent -> autogen.agentchat * bug fix in portfolio * notebook * timeout * timeout * infer lang; close #1150 * timeout * message context * context handling * add sender to generate_reply * clean up the receive function * move mathchat to contrib * contrib * last_message * Add OptiGuide: agent and notebook * Optiguide notebook: add figures and URL 1. figures and code points to remote URL 2. simplify the prompt for the interpreter, because all information is already in the chat history. * Update name: Agent -> GenericAgent * Update notebook * Rename: GenericAgent -> ResponsiveAgent * Rebase to autogen.agentchat * OptiGuide: Comment, sytle, and notebook updates * simplify optiguide * raise error when msg is invalid; fix docstr * allow return None for generate_reply() * update_system_message * test update_system_message * simplify optiguide * simplify optiguide * simplify optiguide * simplify optiguide * move test * add test and fix bug * doc update * doc update * doc update * color * optiguide * prompt * test danger case * packaging * docker * remove path in traceback * capture ipython output * simplify * find code blocks with llm * find code with llm * order * order * fix bug in context handling * print executing msg * print executing msg * test find code * test find code * disable find_code * default_auto_reply * default auto reply * remove optiguide * remove -e --------- Co-authored-by: Beibin Li <beibin79@gmail.com>
2023-07-31 19:22:30 -07:00
dummy_agent_3 = ConversableAgent(name="dummy_agent_3", llm_config=False, human_input_mode="TERMINATE")
with pytest.raises(KeyError):
dummy_agent_1.last_message(dummy_agent_3)
# Check the description field
assert dummy_agent_1.description != dummy_agent_1.system_message
assert dummy_agent_2.description == dummy_agent_2.system_message
dummy_agent_4 = ConversableAgent(
name="dummy_agent_4",
system_message="The fourth dummy agent used for testing.",
llm_config=False,
human_input_mode="TERMINATE",
)
assert dummy_agent_4.description == "The fourth dummy agent used for testing." # Same as system message
dummy_agent_5 = ConversableAgent(
name="dummy_agent_5",
system_message="",
description="The fifth dummy agent used for testing.",
llm_config=False,
human_input_mode="TERMINATE",
)
assert dummy_agent_5.description == "The fifth dummy agent used for testing." # Same as system message
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
def test_generate_reply():
def add_num(num_to_be_added):
given_num = 10
return num_to_be_added + given_num
dummy_agent_2 = ConversableAgent(
name="user_proxy", llm_config=False, human_input_mode="TERMINATE", function_map={"add_num": add_num}
)
messages = [{"function_call": {"name": "add_num", "arguments": '{ "num_to_be_added": 5 }'}, "role": "assistant"}]
# when sender is None, messages is provided
assert (
dummy_agent_2.generate_reply(messages=messages, sender=None)["content"] == "15"
), "generate_reply not working when sender is None"
# when sender is provided, messages is None
dummy_agent_1 = ConversableAgent(name="dummy_agent_1", llm_config=False, human_input_mode="ALWAYS")
dummy_agent_2._oai_messages[dummy_agent_1] = messages
assert (
dummy_agent_2.generate_reply(messages=None, sender=dummy_agent_1)["content"] == "15"
), "generate_reply not working when messages is None"
def test_generate_reply_raises_on_messages_and_sender_none(conversable_agent):
with pytest.raises(AssertionError):
conversable_agent.generate_reply(messages=None, sender=None)
@pytest.mark.asyncio
async def test_a_generate_reply_raises_on_messages_and_sender_none(conversable_agent):
with pytest.raises(AssertionError):
await conversable_agent.a_generate_reply(messages=None, sender=None)
def test_update_function_signature_and_register_functions() -> None:
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
agent = ConversableAgent(name="agent", llm_config={})
def exec_python(cell: str) -> None:
pass
def exec_sh(script: str) -> None:
pass
agent.update_function_signature(
{
"name": "python",
"description": "run cell in ipython and return the execution result.",
"parameters": {
"type": "object",
"properties": {
"cell": {
"type": "string",
"description": "Valid Python cell to execute.",
}
},
"required": ["cell"],
},
},
is_remove=False,
)
functions = agent.llm_config["functions"]
assert {f["name"] for f in functions} == {"python"}
agent.update_function_signature(
{
"name": "sh",
"description": "run a shell script and return the execution result.",
"parameters": {
"type": "object",
"properties": {
"script": {
"type": "string",
"description": "Valid shell script to execute.",
}
},
"required": ["script"],
},
},
is_remove=False,
)
functions = agent.llm_config["functions"]
assert {f["name"] for f in functions} == {"python", "sh"}
# register the functions
agent.register_function(
function_map={
"python": exec_python,
"sh": exec_sh,
}
)
assert set(agent.function_map.keys()) == {"python", "sh"}
assert agent.function_map["python"] == exec_python
assert agent.function_map["sh"] == exec_sh
def test__wrap_function_sync():
CurrencySymbol = Literal["USD", "EUR"]
class Currency(BaseModel):
currency: Annotated[CurrencySymbol, Field(..., description="Currency code")]
amount: Annotated[float, Field(100.0, description="Amount of money in the currency")]
Currency(currency="USD", amount=100.0)
def exchange_rate(base_currency: CurrencySymbol, quote_currency: CurrencySymbol) -> float:
if base_currency == quote_currency:
return 1.0
elif base_currency == "USD" and quote_currency == "EUR":
return 1 / 1.1
elif base_currency == "EUR" and quote_currency == "USD":
return 1.1
else:
raise ValueError(f"Unknown currencies {base_currency}, {quote_currency}")
agent = ConversableAgent(name="agent", llm_config=False)
@agent._wrap_function
def currency_calculator(
base: Annotated[Currency, "Base currency"],
quote_currency: Annotated[CurrencySymbol, "Quote currency"] = "EUR",
) -> Currency:
quote_amount = exchange_rate(base.currency, quote_currency) * base.amount
return Currency(amount=quote_amount, currency=quote_currency)
assert (
currency_calculator(base={"currency": "USD", "amount": 110.11}, quote_currency="EUR")
== '{"currency":"EUR","amount":100.1}'
)
assert not inspect.iscoroutinefunction(currency_calculator)
@pytest.mark.asyncio
async def test__wrap_function_async():
CurrencySymbol = Literal["USD", "EUR"]
class Currency(BaseModel):
currency: Annotated[CurrencySymbol, Field(..., description="Currency code")]
amount: Annotated[float, Field(100.0, description="Amount of money in the currency")]
Currency(currency="USD", amount=100.0)
def exchange_rate(base_currency: CurrencySymbol, quote_currency: CurrencySymbol) -> float:
if base_currency == quote_currency:
return 1.0
elif base_currency == "USD" and quote_currency == "EUR":
return 1 / 1.1
elif base_currency == "EUR" and quote_currency == "USD":
return 1.1
else:
raise ValueError(f"Unknown currencies {base_currency}, {quote_currency}")
agent = ConversableAgent(name="agent", llm_config=False)
@agent._wrap_function
async def currency_calculator(
base: Annotated[Currency, "Base currency"],
quote_currency: Annotated[CurrencySymbol, "Quote currency"] = "EUR",
) -> Currency:
quote_amount = exchange_rate(base.currency, quote_currency) * base.amount
return Currency(amount=quote_amount, currency=quote_currency)
assert (
await currency_calculator(base={"currency": "USD", "amount": 110.11}, quote_currency="EUR")
== '{"currency":"EUR","amount":100.1}'
)
assert inspect.iscoroutinefunction(currency_calculator)
def get_origin(d: Dict[str, Callable[..., Any]]) -> Dict[str, Callable[..., Any]]:
return {k: v._origin for k, v in d.items()}
def test_register_for_llm():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": []})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": []})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": []})
@agent3.register_for_llm()
@agent2.register_for_llm(name="python")
@agent1.register_for_llm(description="run cell in ipython and return the execution result.")
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
pass
expected1 = [
{
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
"type": "function",
"function": {
"description": "run cell in ipython and return the execution result.",
"name": "exec_python",
"parameters": {
"type": "object",
"properties": {
"cell": {
"type": "string",
"description": "Valid Python cell to execute.",
}
},
"required": ["cell"],
},
},
}
]
expected2 = copy.deepcopy(expected1)
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
expected2[0]["function"]["name"] = "python"
expected3 = expected2
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
assert agent1.llm_config["tools"] == expected1
assert agent2.llm_config["tools"] == expected2
assert agent3.llm_config["tools"] == expected3
@agent3.register_for_llm()
@agent2.register_for_llm()
@agent1.register_for_llm(name="sh", description="run a shell script and return the execution result.")
async def exec_sh(script: Annotated[str, "Valid shell script to execute."]) -> str:
pass
expected1 = expected1 + [
{
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
"type": "function",
"function": {
"name": "sh",
"description": "run a shell script and return the execution result.",
"parameters": {
"type": "object",
"properties": {
"script": {
"type": "string",
"description": "Valid shell script to execute.",
}
},
"required": ["script"],
},
},
}
]
expected2 = expected2 + [expected1[1]]
expected3 = expected3 + [expected1[1]]
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
assert agent1.llm_config["tools"] == expected1
assert agent2.llm_config["tools"] == expected2
assert agent3.llm_config["tools"] == expected3
def test_register_for_llm_api_style_function():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
agent3 = ConversableAgent(name="agent3", llm_config={"config_list": []})
agent2 = ConversableAgent(name="agent2", llm_config={"config_list": []})
agent1 = ConversableAgent(name="agent1", llm_config={"config_list": []})
@agent3.register_for_llm(api_style="function")
@agent2.register_for_llm(name="python", api_style="function")
@agent1.register_for_llm(
description="run cell in ipython and return the execution result.", api_style="function"
)
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
pass
expected1 = [
{
"description": "run cell in ipython and return the execution result.",
"name": "exec_python",
"parameters": {
"type": "object",
"properties": {
"cell": {
"type": "string",
"description": "Valid Python cell to execute.",
}
},
"required": ["cell"],
},
}
]
expected2 = copy.deepcopy(expected1)
expected2[0]["name"] = "python"
expected3 = expected2
assert agent1.llm_config["functions"] == expected1
assert agent2.llm_config["functions"] == expected2
assert agent3.llm_config["functions"] == expected3
@agent3.register_for_llm(api_style="function")
@agent2.register_for_llm(api_style="function")
@agent1.register_for_llm(
name="sh", description="run a shell script and return the execution result.", api_style="function"
)
async def exec_sh(script: Annotated[str, "Valid shell script to execute."]) -> str:
pass
expected1 = expected1 + [
{
"name": "sh",
"description": "run a shell script and return the execution result.",
"parameters": {
"type": "object",
"properties": {
"script": {
"type": "string",
"description": "Valid shell script to execute.",
}
},
"required": ["script"],
},
}
]
expected2 = expected2 + [expected1[1]]
expected3 = expected3 + [expected1[1]]
assert agent1.llm_config["functions"] == expected1
assert agent2.llm_config["functions"] == expected2
assert agent3.llm_config["functions"] == expected3
def test_register_for_llm_without_description():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
agent = ConversableAgent(name="agent", llm_config={})
with pytest.raises(ValueError) as e:
@agent.register_for_llm()
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
pass
assert e.value.args[0] == "Function description is required, none found."
def test_register_for_llm_without_LLM():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
agent = ConversableAgent(name="agent", llm_config=None)
agent.llm_config = None
assert agent.llm_config is None
with pytest.raises(RuntimeError) as e:
@agent.register_for_llm(description="run cell in ipython and return the execution result.")
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str:
pass
assert e.value.args[0] == "LLM config must be setup before registering a function for LLM."
def test_register_for_execution():
with pytest.MonkeyPatch.context() as mp:
mp.setenv("OPENAI_API_KEY", "mock")
[Core] [Tool Call] adjust conversable agent to support tool_calls (#974) * adjust conversable and compressible agents to support tool_calls * split out tools into their own reply def * copilot typo * address review comments * revert compressible_agent and token_count_utils calls * cleanup terminate check and remove unnecessary code * doc search and update * return function/tool calls as interrupted when user provides a reply to a tool call request * fix tool name reference * fix formatting * fix initiate receiving a dict * missed changed roled * ignore incoming role, more similiar to existing code * consistency * redundant to_dict * fix todo comment * uneeded change * handle dict reply in groupchat * Fix generate_tool_call_calls_reply_comment * change method annotation for register_for_llm from functions to tools * typo autogen/agentchat/conversable_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * add deprecation comments for function_call * tweak doc strings * switch to ToolFunction type * update the return to * fix generate_init_message return type * Revert "fix generate_init_message return type" This reverts commit 645ba8b76afa06f160223ecdac6f3dc1822fd249. * undo force init to dict * fix notebooks and groupchat tool handling * fix type * use get for key error * fix teachable to pull content from dict * change single message tool response * cleanup unnessary changes * little better tool response concatenation * update tools tests * add skip openai check to tools tests * fix nits * move func name normalization to oai_reply and assert configured names * fix whitespace * remove extra normalize * tool name is now normalized in the generate_reply function, so will not be incorrect when sent to receive * validate function names in init and expand comments for validation methods * fix dict comprehension * Dummy llm config for unit tests * handle tool_calls set to None * fix tool name reference * method operates on responses not calls --------- Co-authored-by: Yiran Wu <32823396+kevin666aa@users.noreply.github.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Eric Zhu <ekzhu@users.noreply.github.com>
2024-01-06 09:55:25 -08:00
agent = ConversableAgent(name="agent", llm_config={"config_list": []})
user_proxy_1 = UserProxyAgent(name="user_proxy_1")
user_proxy_2 = UserProxyAgent(name="user_proxy_2")
@user_proxy_2.register_for_execution(name="python")
@agent.register_for_execution()
@agent.register_for_llm(description="run cell in ipython and return the execution result.")
@user_proxy_1.register_for_execution()
def exec_python(cell: Annotated[str, "Valid Python cell to execute."]):
pass
expected_function_map_1 = {"exec_python": exec_python}
assert get_origin(agent.function_map) == expected_function_map_1
assert get_origin(user_proxy_1.function_map) == expected_function_map_1
expected_function_map_2 = {"python": exec_python}
assert get_origin(user_proxy_2.function_map) == expected_function_map_2
@agent.register_for_execution()
@agent.register_for_llm(description="run a shell script and return the execution result.")
@user_proxy_1.register_for_execution(name="sh")
async def exec_sh(script: Annotated[str, "Valid shell script to execute."]):
pass
expected_function_map = {
"exec_python": exec_python,
"sh": exec_sh,
}
assert get_origin(agent.function_map) == expected_function_map
assert get_origin(user_proxy_1.function_map) == expected_function_map
@pytest.mark.skipif(
skip or not sys.version.startswith("3.10"),
reason="do not run if openai is not installed or py!=3.10",
)
def test_function_registration_e2e_sync() -> None:
config_list = autogen.config_list_from_json(
OAI_CONFIG_LIST,
filter_dict={
"model": ["gpt-4", "gpt-4-0314", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"],
},
file_location=KEY_LOC,
)
llm_config = {
"config_list": config_list,
}
coder = autogen.AssistantAgent(
name="chatbot",
system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config=llm_config,
)
# create a UserProxyAgent instance named "user_proxy"
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
system_message="A proxy for the user for executing code.",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={"work_dir": "coding"},
)
# define functions according to the function description
timer_mock = unittest.mock.MagicMock()
stopwatch_mock = unittest.mock.MagicMock()
# An example async function
@user_proxy.register_for_execution()
@coder.register_for_llm(description="create a timer for N seconds")
def timer(num_seconds: Annotated[str, "Number of seconds in the timer."]) -> str:
print("timer is running")
for i in range(int(num_seconds)):
print(".", end="")
time.sleep(0.01)
print()
timer_mock(num_seconds=num_seconds)
return "Timer is done!"
# An example sync function
@user_proxy.register_for_execution()
@coder.register_for_llm(description="create a stopwatch for N seconds")
def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."]) -> str:
print("stopwatch is running")
# assert False, "stopwatch's alive!"
for i in range(int(num_seconds)):
print(".", end="")
time.sleep(0.01)
print()
stopwatch_mock(num_seconds=num_seconds)
return "Stopwatch is done!"
# start the conversation
# 'await' is used to pause and resume code execution for async IO operations.
# Without 'await', an async function returns a coroutine object but doesn't execute the function.
# With 'await', the async function is executed and the current function is paused until the awaited function returns a result.
user_proxy.initiate_chat( # noqa: F704
coder,
message="Create a timer for 2 seconds and then a stopwatch for 3 seconds.",
)
timer_mock.assert_called_once_with(num_seconds="2")
stopwatch_mock.assert_called_once_with(num_seconds="3")
@pytest.mark.skipif(
skip or not sys.version.startswith("3.10"),
reason="do not run if openai is not installed or py!=3.10",
)
@pytest.mark.asyncio()
async def test_function_registration_e2e_async() -> None:
config_list = autogen.config_list_from_json(
OAI_CONFIG_LIST,
filter_dict={
"model": ["gpt-4", "gpt-4-0314", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"],
},
file_location=KEY_LOC,
)
llm_config = {
"config_list": config_list,
}
coder = autogen.AssistantAgent(
name="chatbot",
system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config=llm_config,
)
# create a UserProxyAgent instance named "user_proxy"
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
system_message="A proxy for the user for executing code.",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={"work_dir": "coding"},
)
# define functions according to the function description
timer_mock = unittest.mock.MagicMock()
stopwatch_mock = unittest.mock.MagicMock()
# An example async function
@user_proxy.register_for_execution()
@coder.register_for_llm(description="create a timer for N seconds")
async def timer(num_seconds: Annotated[str, "Number of seconds in the timer."]) -> str:
print("timer is running")
for i in range(int(num_seconds)):
print(".", end="")
await asyncio.sleep(0.01)
print()
timer_mock(num_seconds=num_seconds)
return "Timer is done!"
# An example sync function
@user_proxy.register_for_execution()
@coder.register_for_llm(description="create a stopwatch for N seconds")
def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."]) -> str:
print("stopwatch is running")
# assert False, "stopwatch's alive!"
for i in range(int(num_seconds)):
print(".", end="")
time.sleep(0.01)
print()
stopwatch_mock(num_seconds=num_seconds)
return "Stopwatch is done!"
# start the conversation
# 'await' is used to pause and resume code execution for async IO operations.
# Without 'await', an async function returns a coroutine object but doesn't execute the function.
# With 'await', the async function is executed and the current function is paused until the awaited function returns a result.
await user_proxy.a_initiate_chat( # noqa: F704
coder,
message="Create a timer for 4 seconds and then a stopwatch for 5 seconds.",
)
timer_mock.assert_called_once_with(num_seconds="4")
stopwatch_mock.assert_called_once_with(num_seconds="5")
@pytest.mark.skipif(
skip,
reason="do not run if skipping openai",
)
def test_no_llm_config():
# We expect a TypeError when the model isn't specified
with pytest.raises(TypeError, match=r".*Missing required arguments.*"):
agent1 = ConversableAgent(name="agent1", llm_config=False, human_input_mode="NEVER", default_auto_reply="")
agent2 = ConversableAgent(
name="agent2", llm_config={"api_key": "Intentionally left blank."}, human_input_mode="NEVER"
)
agent1.initiate_chat(agent2, message="hi")
Support function_call in `autogen/agent` (#1091) * update funccall * code format * update to comments * update notebook * remove test for py3.7 * allow funccall to class functions * add test and clean up notebook * revise notebook and test * update * update mathagent * Update flaml/autogen/agent/agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * revise to comments * revise function call design, notebook and test. add doc * code format * ad message_to_dict function * update mathproxyagent * revise docstr * update * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * Update flaml/autogen/agent/math_user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * Update flaml/autogen/agent/user_proxy_agent.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> * simply funccall in userproxyagent, rewind auto-gen.md, revise to comments * code format * update * remove notebook for another pr * revise oai_conversation part in agent, revise function exec in user_proxy_agent * update test_funccall * update * update * fix pydantic version * Update test/autogen/test_agent.py Co-authored-by: Chi Wang <wang.chi@microsoft.com> * fix bug * fix bug * update * update is_termination_msg to accept dict --------- Co-authored-by: Chi Wang <wang.chi@microsoft.com> Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: Li Jiang <bnujli@gmail.com>
2023-07-06 06:08:44 +08:00
if __name__ == "__main__":
# test_trigger()
# test_context()
# test_max_consecutive_auto_reply()
test_generate_code_execution_reply()
# test_conversable_agent()
# test_no_llm_config()