2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "Copyright (c) 2021. All rights reserved.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "Contributed by: @bnriiitb\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "Licensed under the MIT License."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "# Using AutoML in Sklearn Pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "This tutorial will help you understand how FLAML's AutoML can be used as a transformer in the Sklearn pipeline."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "## 1.Introduction\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "### 1.1 FLAML - Fast and Lightweight AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								    "FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models with low computational cost. It is fast and economical. The simple and lightweight design makes it easy  to use and extend, such as adding new learners. \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "FLAML can \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "- serve as an economical AutoML engine,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "- be used as a fast hyperparameter tuning tool, or \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "   tuning tasks.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` option:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "```bash\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "pip install flaml[notebook]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "```"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "### 1.2 Why are pipelines a silver bullet?\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "In a typical machine learning workflow we have to apply all the transformations at least twice. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "1. During Training\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "2. During Inference\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "Scikit-learn pipelines provide an easy to use inteface to automate ML workflows by allowing several transformers to be chained together. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "The key benefits of using pipelines:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "* Make ML workflows highly readable, enabling fast development and easy review\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "* Help to build sequential and parallel processes\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "* Allow hyperparameter tuning across the estimators\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "* Easier to share and collaborate with multiple users (bug fixes, enhancements etc)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "* Enforce the implementation and order of steps"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "#### As FLAML's AutoML module can be used a transformer in the Sklearn's pipeline we can get all the benefits of pipeline and thereby write extremley clean, and resuable code."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "execution_count": 44,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "!pip install flaml[notebook];"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "## 2. Classification Example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "### Load data and preprocess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "load dataset from ./openml_ds1169.pkl\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Dataset name: airlines\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "X_train.shape: (404537, 7), y_train.shape: (404537,);\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "X_test.shape: (134846, 7), y_test.shape: (134846,)\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from flaml.data import load_openml_dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "X_train, X_test, y_train, y_test = load_openml_dataset(\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    dataset_id=1169, data_dir='./', random_state=1234, dataset_format='array')"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "array([  12., 2648.,    4.,   15.,    4.,  450.,   67.], dtype=float32)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "X_train[0]"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "## 3. Create a Pipeline"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "text/html": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b91d1bdf-ccb8-4fa5-a2d0-67a3538c0afc\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b91d1bdf-ccb8-4fa5-a2d0-67a3538c0afc\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"a8311733-9e55-4c0c-9c2a-6b9ba6227596\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"a8311733-9e55-4c0c-9c2a-6b9ba6227596\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"52580e54-89ab-4fb7-83a1-ae13962854bb\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"52580e54-89ab-4fb7-83a1-ae13962854bb\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b9fe5397-bf24-491d-a938-c39a780e1ac0\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b9fe5397-bf24-491d-a938-c39a780e1ac0\">AutoML</label><div class=\"sk-toggleable__content\"><pre><flaml.automl.AutoML object at 0x7f046d56fb50></pre></div></div></div></div></div></div></div>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "execution_count": 6,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "import sklearn\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from sklearn import set_config\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from sklearn.pipeline import Pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from sklearn.impute import SimpleImputer\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from sklearn.preprocessing import StandardScaler\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "from flaml import AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "set_config(display='diagram')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "imputer = SimpleImputer()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "standardizer = StandardScaler()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl = AutoML()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl_pipeline = Pipeline([\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    (\"imputuer\",imputer),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    (\"standardizer\", standardizer),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    (\"automl\", automl)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "])\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl_pipeline"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "### Run FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    \"time_budget\": 60,  # total running time in seconds\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 07:16:10 +09:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								    "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2']\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								    "    \"task\": 'classification',  # task type   \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    \"estimator_list\":['xgboost','catboost','lgbm'],\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "}"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 8,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:13] {1130} INFO - Evaluation method: holdout\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {624} INFO - Using StratifiedKFold\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1155} INFO - Minimizing error metric: 1-accuracy\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1175} INFO - List of ML learners in AutoML Run: ['xgboost', 'catboost', 'lgbm']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 0, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.5s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 1, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.6s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 2, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.6s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 3, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.7s,\tbest xgboost's error=0.3755,\tbest xgboost's error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 4, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.7s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 5, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.8s,\tbest lgbm's error=0.3811,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 6, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.8s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 7, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 0.9s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 8, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1515} INFO -  at 1.0s,\tbest xgboost's error=0.3679,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:14] {1358} INFO - iteration 9, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.1s,\tbest lgbm's error=0.3811,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 10, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.1s,\tbest lgbm's error=0.3755,\tbest xgboost's error=0.3679\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 11, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.2s,\tbest xgboost's error=0.3637,\tbest xgboost's error=0.3637\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 12, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.4s,\tbest xgboost's error=0.3594,\tbest xgboost's error=0.3594\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 13, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.5s,\tbest xgboost's error=0.3594,\tbest xgboost's error=0.3594\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 14, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.7s,\tbest xgboost's error=0.3591,\tbest xgboost's error=0.3591\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 15, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 1.7s,\tbest lgbm's error=0.3647,\tbest xgboost's error=0.3591\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 16, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1515} INFO -  at 2.0s,\tbest xgboost's error=0.3585,\tbest xgboost's error=0.3585\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:15] {1358} INFO - iteration 17, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.0s,\tbest lgbm's error=0.3647,\tbest xgboost's error=0.3585\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 18, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.1s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3585\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 19, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.3s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 20, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.6s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 21, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.7s,\tbest xgboost's error=0.3553,\tbest xgboost's error=0.3553\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 22, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.8s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3553\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 23, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1515} INFO -  at 2.9s,\tbest lgbm's error=0.3629,\tbest xgboost's error=0.3553\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:16] {1358} INFO - iteration 24, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.1s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 25, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.3s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 26, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.4s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 27, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.5s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 28, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1515} INFO -  at 3.9s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:17] {1358} INFO - iteration 29, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:18] {1515} INFO -  at 4.1s,\tbest xgboost's error=0.3520,\tbest xgboost's error=0.3520\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:18] {1358} INFO - iteration 30, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:18] {1515} INFO -  at 4.8s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:18] {1358} INFO - iteration 31, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:19] {1515} INFO -  at 5.2s,\tbest lgbm's error=0.3573,\tbest xgboost's error=0.3485\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:19] {1358} INFO - iteration 32, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:19] {1515} INFO -  at 5.7s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:19] {1358} INFO - iteration 33, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:20] {1515} INFO -  at 6.6s,\tbest xgboost's error=0.3485,\tbest xgboost's error=0.3485\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:20] {1358} INFO - iteration 34, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:20] {1515} INFO -  at 6.9s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:20] {1358} INFO - iteration 35, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:21] {1515} INFO -  at 7.2s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:21] {1358} INFO - iteration 36, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:21] {1515} INFO -  at 7.4s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:21] {1358} INFO - iteration 37, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.2s,\tbest xgboost's error=0.3485,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 38, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.5s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 39, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1515} INFO -  at 8.8s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:22] {1358} INFO - iteration 40, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:23] {1515} INFO -  at 9.7s,\tbest xgboost's error=0.3485,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:23] {1358} INFO - iteration 41, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:25] {1515} INFO -  at 11.7s,\tbest lgbm's error=0.3481,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:25] {1358} INFO - iteration 42, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:26] {1515} INFO -  at 12.2s,\tbest catboost's error=0.3647,\tbest lgbm's error=0.3481\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:26] {1358} INFO - iteration 43, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.4s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 44, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.6s,\tbest catboost's error=0.3647,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 45, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1515} INFO -  at 14.8s,\tbest catboost's error=0.3601,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:28] {1358} INFO - iteration 46, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:30] {1515} INFO -  at 16.9s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:30] {1358} INFO - iteration 47, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:34] {1515} INFO -  at 21.0s,\tbest xgboost's error=0.3332,\tbest xgboost's error=0.3332\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:34] {1358} INFO - iteration 48, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:35] {1515} INFO -  at 21.1s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3332\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:35] {1358} INFO - iteration 49, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:37] {1515} INFO -  at 23.2s,\tbest lgbm's error=0.3409,\tbest xgboost's error=0.3332\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:37] {1358} INFO - iteration 50, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:38] {1515} INFO -  at 24.6s,\tbest xgboost's error=0.3332,\tbest xgboost's error=0.3332\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:38] {1358} INFO - iteration 51, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:53] {1515} INFO -  at 40.0s,\tbest xgboost's error=0.3279,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:32:53] {1358} INFO - iteration 52, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:01] {1515} INFO -  at 47.6s,\tbest xgboost's error=0.3279,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:01] {1358} INFO - iteration 53, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:01] {1515} INFO -  at 47.7s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:01] {1358} INFO - iteration 54, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.2s,\tbest catboost's error=0.3601,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 55, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.5s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 56, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 48.7s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 57, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1515} INFO -  at 49.0s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:02] {1358} INFO - iteration 58, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:03] {1515} INFO -  at 49.1s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:03] {1358} INFO - iteration 59, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:03] {1515} INFO -  at 49.4s,\tbest catboost's error=0.3552,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:03] {1358} INFO - iteration 60, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:06] {1515} INFO -  at 52.2s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:06] {1358} INFO - iteration 61, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:07] {1515} INFO -  at 53.9s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:07] {1358} INFO - iteration 62, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:09] {1515} INFO -  at 55.3s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:09] {1358} INFO - iteration 63, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:10] {1515} INFO -  at 56.4s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:10] {1358} INFO - iteration 64, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:11] {1515} INFO -  at 57.5s,\tbest catboost's error=0.3453,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:11] {1358} INFO - iteration 65, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:13] {1515} INFO -  at 59.8s,\tbest lgbm's error=0.3409,\tbest xgboost's error=0.3279\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:13] {1592} INFO - selected model: XGBClassifier(base_score=0.5, booster='gbtree',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              colsample_bylevel=0.810466508891351, colsample_bynode=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              colsample_bytree=0.8005378817953572, gamma=0, gpu_id=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              grow_policy='lossguide', importance_type='gain',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              interaction_constraints='', learning_rate=0.06234183309508761,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              max_delta_step=0, max_depth=0, max_leaves=1797,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              min_child_weight=0.07275175679381725, missing=nan,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              monotone_constraints='()', n_estimators=63, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              num_parallel_tree=1, random_state=0, reg_alpha=0.5768305704485758,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              reg_lambda=6.867180836557797, scale_pos_weight=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              subsample=0.9814772488195874, tree_method='hist',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              use_label_encoder=False, validate_parameters=1, verbosity=0)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:26] {1633} INFO - retrain xgboost for 13.0s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:26] {1636} INFO - retrained model: XGBClassifier(base_score=0.5, booster='gbtree',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              colsample_bylevel=0.810466508891351, colsample_bynode=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              colsample_bytree=0.8005378817953572, gamma=0, gpu_id=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              grow_policy='lossguide', importance_type='gain',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              interaction_constraints='', learning_rate=0.06234183309508761,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              max_delta_step=0, max_depth=0, max_leaves=1797,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              min_child_weight=0.07275175679381725, missing=nan,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              monotone_constraints='()', n_estimators=63, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              num_parallel_tree=1, random_state=0, reg_alpha=0.5768305704485758,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              reg_lambda=6.867180836557797, scale_pos_weight=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              subsample=0.9814772488195874, tree_method='hist',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "              use_label_encoder=False, validate_parameters=1, verbosity=0)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:26] {1199} INFO - fit succeeded\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "[flaml.automl: 08-22 21:33:26] {1200} INFO - Time taken to find the best model: 40.023393869400024\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								      "text/html": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "<style>div.sk-top-container {color: black;background-color: white;}div.sk-toggleable {background-color: white;}label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}div.sk-estimator:hover {background-color: #d4ebff;}div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}div.sk-item {z-index: 1;}div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}div.sk-parallel-item:only-child::after {width: 0;}div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}div.sk-label-container {position: relative;z-index: 2;text-align: center;}div.sk-container {display: inline-block;position: relative;}</style><div class=\"sk-top-container\"><div class=\"sk-container\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"b994edf1-5e76-4cd3-b719-4a204af673dc\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"b994edf1-5e76-4cd3-b719-4a204af673dc\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"c94ee64a-d8b1-4cbb-aeca-952bf6963c13\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"c94ee64a-d8b1-4cbb-aeca-952bf6963c13\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"6a28d11a-19e2-4243-8b85-e3ba5f6f2a7e\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"6a28d11a-19e2-4243-8b85-e3ba5f6f2a7e\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"03dcbe59-a8be-4f09-a944-115d90939f81\" type=\"checkbox\" ><label class=\"sk-toggleable__label\" for=\"03dcbe59-a8be-4f09-a944-115d90939f81\">AutoML</label><div class=\"sk-toggleable__content\"><pre><flaml.automl.AutoML object at 0x7f046d56fb50></pre></div></div></div></div></div></div></div>"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								      ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								       "                ('automl', <flaml.automl.AutoML object at 0x7f046d56fb50>)])"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "execution_count": 8,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl_pipeline.fit(X_train, y_train, \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "                        automl__time_budget=settings['time_budget'],\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "                        automl__metric=settings['metric'],\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "                        automl__estimator_list=settings['estimator_list'],\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "                        automl__log_training_metric=True)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 9,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Best ML leaner: xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Best hyperparmeter config: {'n_estimators': 63, 'max_leaves': 1797, 'min_child_weight': 0.07275175679381725, 'learning_rate': 0.06234183309508761, 'subsample': 0.9814772488195874, 'colsample_bylevel': 0.810466508891351, 'colsample_bytree': 0.8005378817953572, 'reg_alpha': 0.5768305704485758, 'reg_lambda': 6.867180836557797, 'FLAML_sample_size': 364083}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Best accuracy on validation data: 0.6721\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Training duration of best run: 15.45 s\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "# Get the automl object from the pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl = automl_pipeline.steps[2][1]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "# Get the best config and best learner\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Best ML leaner:', automl.best_estimator)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								       "<flaml.model.XGBoostSklearnEstimator at 0x7f03a5eada00>"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "automl.model"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "## 4. Persist the model binary file"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 11,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "# Persist the automl object as pickle file\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "import pickle\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "with open('automl.pkl', 'wb') as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "    pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "execution_count": 12,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "Predicted labels [0 1 1 ... 0 1 0]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								      "True labels [0 0 0 ... 1 0 1]\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								      "Predicted probas  [0.3764987  0.6126277  0.699604   0.27359942 0.25294745]\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "# Performance inference on the testing dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "y_pred = automl_pipeline.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('True labels', y_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "y_pred_proba = automl_pipeline.predict_proba(X_test)[:,1]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "print('Predicted probas ',y_pred_proba[:5])"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 "metadata": {
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								  "interpreter": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "display_name": "Python 3.8.0 64-bit ('blend': conda)",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								   "version": "3.8.0"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
							
								 "nbformat_minor": 4
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
							
								}