"Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"# AutoML with FLAML Library\n",
"\n",
"\n",
"## 1. Introduction\n",
"\n",
"FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
"with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy \n",
"to use and extend, such as adding new learners. FLAML can \n",
"- serve as an economical AutoML engine,\n",
"- be used as a fast hyperparameter tuning tool, or \n",
"- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
" tuning tasks.\n",
"\n",
"In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library.\n",
"\n",
"FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` option:\n",
"```bash\n",
"pip install flaml[notebook]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install flaml[notebook];"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 2. Classification Example\n",
"### Load data and preprocess\n",
"\n",
"Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
"In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"''' import AutoML class from flaml package '''\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 27, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:09] {1160} INFO - at 2.4s,\tbest extra_tree's error=0.4013,\tbest xgboost's error=0.3575\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 28, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:09] {1160} INFO - at 2.4s,\tbest extra_tree's error=0.4013,\tbest xgboost's error=0.3575\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 29, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:09] {1160} INFO - at 2.5s,\tbest extra_tree's error=0.4013,\tbest xgboost's error=0.3575\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 30, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:09] {1160} INFO - at 2.7s,\tbest xgboost's error=0.3575,\tbest xgboost's error=0.3575\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 31, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:09] {1160} INFO - at 3.0s,\tbest xgboost's error=0.3567,\tbest xgboost's error=0.3567\n",
"[flaml.automl: 07-06 10:20:09] {1012} INFO - iteration 32, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:10] {1160} INFO - at 3.3s,\tbest xgboost's error=0.3567,\tbest xgboost's error=0.3567\n",
"[flaml.automl: 07-06 10:20:10] {1012} INFO - iteration 33, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:10] {1160} INFO - at 3.4s,\tbest extra_tree's error=0.3918,\tbest xgboost's error=0.3567\n",
"[flaml.automl: 07-06 10:20:10] {1012} INFO - iteration 34, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:10] {1160} INFO - at 3.9s,\tbest xgboost's error=0.3505,\tbest xgboost's error=0.3505\n",
"[flaml.automl: 07-06 10:20:10] {1012} INFO - iteration 35, current learner catboost\n",
"[flaml.automl: 07-06 10:20:11] {1160} INFO - at 4.6s,\tbest catboost's error=0.3624,\tbest xgboost's error=0.3505\n",
"[flaml.automl: 07-06 10:20:11] {1012} INFO - iteration 36, current learner catboost\n",
"[flaml.automl: 07-06 10:20:12] {1160} INFO - at 5.6s,\tbest catboost's error=0.3624,\tbest xgboost's error=0.3505\n",
"[flaml.automl: 07-06 10:20:12] {1012} INFO - iteration 37, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:12] {1160} INFO - at 5.7s,\tbest extra_tree's error=0.3918,\tbest xgboost's error=0.3505\n",
"[flaml.automl: 07-06 10:20:12] {1012} INFO - iteration 38, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:12] {1160} INFO - at 6.0s,\tbest xgboost's error=0.3505,\tbest xgboost's error=0.3505\n",
"[flaml.automl: 07-06 10:20:12] {1012} INFO - iteration 39, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:14] {1160} INFO - at 8.0s,\tbest xgboost's error=0.3504,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:14] {1012} INFO - iteration 40, current learner catboost\n",
"[flaml.automl: 07-06 10:20:15] {1160} INFO - at 8.2s,\tbest catboost's error=0.3614,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:15] {1012} INFO - iteration 41, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:15] {1160} INFO - at 9.0s,\tbest xgboost's error=0.3504,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:15] {1012} INFO - iteration 42, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:15] {1160} INFO - at 9.0s,\tbest extra_tree's error=0.3918,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:15] {1012} INFO - iteration 43, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:16] {1160} INFO - at 9.2s,\tbest lgbm's error=0.3681,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:16] {1012} INFO - iteration 44, current learner xgboost\n",
"[flaml.automl: 07-06 10:20:22] {1160} INFO - at 15.9s,\tbest xgboost's error=0.3504,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:22] {1012} INFO - iteration 45, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:22] {1160} INFO - at 16.1s,\tbest extra_tree's error=0.3883,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:22] {1012} INFO - iteration 46, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.2s,\tbest lgbm's error=0.3681,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 47, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.4s,\tbest lgbm's error=0.3607,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 48, current learner rf\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.5s,\tbest rf's error=0.4019,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 49, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.7s,\tbest lgbm's error=0.3607,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 50, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.8s,\tbest lgbm's error=0.3607,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 51, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 16.9s,\tbest extra_tree's error=0.3883,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 52, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:23] {1160} INFO - at 17.1s,\tbest lgbm's error=0.3591,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:23] {1012} INFO - iteration 53, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:24] {1160} INFO - at 17.3s,\tbest lgbm's error=0.3591,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:24] {1012} INFO - iteration 54, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:24] {1160} INFO - at 17.6s,\tbest lgbm's error=0.3591,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:24] {1012} INFO - iteration 55, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:24] {1160} INFO - at 17.7s,\tbest lgbm's error=0.3591,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:24] {1012} INFO - iteration 56, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:24] {1160} INFO - at 18.0s,\tbest extra_tree's error=0.3877,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:24] {1012} INFO - iteration 57, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:25] {1160} INFO - at 18.3s,\tbest lgbm's error=0.3532,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:25] {1012} INFO - iteration 58, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:25] {1160} INFO - at 18.4s,\tbest lgbm's error=0.3532,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:25] {1012} INFO - iteration 59, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:25] {1160} INFO - at 18.9s,\tbest lgbm's error=0.3532,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:25] {1012} INFO - iteration 60, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:25] {1160} INFO - at 19.1s,\tbest lgbm's error=0.3532,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:25] {1012} INFO - iteration 61, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:26] {1160} INFO - at 19.9s,\tbest lgbm's error=0.3532,\tbest xgboost's error=0.3504\n",
"[flaml.automl: 07-06 10:20:26] {1012} INFO - iteration 62, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:28] {1160} INFO - at 21.5s,\tbest lgbm's error=0.3476,\tbest lgbm's error=0.3476\n",
"[flaml.automl: 07-06 10:20:28] {1012} INFO - iteration 63, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:29] {1160} INFO - at 22.9s,\tbest lgbm's error=0.3476,\tbest lgbm's error=0.3476\n",
"[flaml.automl: 07-06 10:20:29] {1012} INFO - iteration 64, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:31] {1160} INFO - at 24.8s,\tbest lgbm's error=0.3470,\tbest lgbm's error=0.3470\n",
"[flaml.automl: 07-06 10:20:31] {1012} INFO - iteration 65, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:33] {1160} INFO - at 26.2s,\tbest lgbm's error=0.3470,\tbest lgbm's error=0.3470\n",
"[flaml.automl: 07-06 10:20:33] {1012} INFO - iteration 66, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:35] {1160} INFO - at 28.7s,\tbest lgbm's error=0.3470,\tbest lgbm's error=0.3470\n",
"[flaml.automl: 07-06 10:20:35] {1012} INFO - iteration 67, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:36] {1160} INFO - at 29.8s,\tbest lgbm's error=0.3470,\tbest lgbm's error=0.3470\n",
"[flaml.automl: 07-06 10:20:36] {1012} INFO - iteration 68, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:42] {1160} INFO - at 35.3s,\tbest lgbm's error=0.3321,\tbest lgbm's error=0.3321\n",
"[flaml.automl: 07-06 10:20:42] {1012} INFO - iteration 69, current learner lrl1\n",
"No low-cost partial config given to the search algorithm. For cost-frugal search, consider providing low-cost values for cost-related hps via 'low_cost_partial_config'.\n",
"/Users/qingyun/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 07-06 10:20:42] {1160} INFO - at 35.5s,\tbest lrl1's error=0.4338,\tbest lgbm's error=0.3321\n",
"[flaml.automl: 07-06 10:20:42] {1012} INFO - iteration 70, current learner lrl1\n",
"/Users/qingyun/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
"[flaml.automl: 07-06 10:20:42] {1160} INFO - at 35.6s,\tbest lrl1's error=0.4338,\tbest lgbm's error=0.3321\n",
"[flaml.automl: 07-06 10:20:42] {1012} INFO - iteration 71, current learner lrl1\n",
"/Users/qingyun/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
"[flaml.automl: 07-06 10:20:42] {1160} INFO - at 35.8s,\tbest lrl1's error=0.4338,\tbest lgbm's error=0.3321\n",
"[flaml.automl: 07-06 10:20:42] {1012} INFO - iteration 72, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:46] {1160} INFO - at 40.1s,\tbest lgbm's error=0.3321,\tbest lgbm's error=0.3321\n",
"[flaml.automl: 07-06 10:20:46] {1012} INFO - iteration 73, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:55] {1160} INFO - at 48.6s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:20:55] {1012} INFO - iteration 74, current learner extra_tree\n",
"[flaml.automl: 07-06 10:20:55] {1160} INFO - at 48.8s,\tbest extra_tree's error=0.3875,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:20:55] {1012} INFO - iteration 75, current learner lgbm\n",
"[flaml.automl: 07-06 10:20:58] {1160} INFO - at 51.1s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:20:58] {1012} INFO - iteration 76, current learner catboost\n",
"[flaml.automl: 07-06 10:20:58] {1160} INFO - at 52.0s,\tbest catboost's error=0.3614,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:20:58] {1012} INFO - iteration 77, current learner lgbm\n",
"[flaml.automl: 07-06 10:21:34] {1160} INFO - at 88.0s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:34] {1012} INFO - iteration 78, current learner lgbm\n",
"[flaml.automl: 07-06 10:21:43] {1160} INFO - at 96.5s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:43] {1012} INFO - iteration 79, current learner catboost\n",
"[flaml.automl: 07-06 10:21:44] {1160} INFO - at 97.3s,\tbest catboost's error=0.3550,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:44] {1012} INFO - iteration 80, current learner catboost\n",
"[flaml.automl: 07-06 10:21:48] {1160} INFO - at 101.7s,\tbest catboost's error=0.3550,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:48] {1012} INFO - iteration 81, current learner lgbm\n",
"[flaml.automl: 07-06 10:21:54] {1160} INFO - at 107.7s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:54] {1012} INFO - iteration 82, current learner extra_tree\n",
"[flaml.automl: 07-06 10:21:54] {1160} INFO - at 108.0s,\tbest extra_tree's error=0.3875,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:54] {1012} INFO - iteration 83, current learner rf\n",
"[flaml.automl: 07-06 10:21:54] {1160} INFO - at 108.0s,\tbest rf's error=0.4019,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:54] {1012} INFO - iteration 84, current learner catboost\n",
"[flaml.automl: 07-06 10:21:58] {1160} INFO - at 111.4s,\tbest catboost's error=0.3488,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:21:58] {1012} INFO - iteration 85, current learner catboost\n",
"[flaml.automl: 07-06 10:22:39] {1160} INFO - at 152.8s,\tbest catboost's error=0.3488,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:39] {1012} INFO - iteration 86, current learner catboost\n",
"[flaml.automl: 07-06 10:22:44] {1160} INFO - at 157.5s,\tbest catboost's error=0.3472,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:44] {1012} INFO - iteration 87, current learner rf\n",
"[flaml.automl: 07-06 10:22:44] {1160} INFO - at 157.7s,\tbest rf's error=0.4019,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:44] {1012} INFO - iteration 88, current learner rf\n",
"[flaml.automl: 07-06 10:22:45] {1160} INFO - at 158.1s,\tbest rf's error=0.3922,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:45] {1012} INFO - iteration 89, current learner rf\n",
"[flaml.automl: 07-06 10:22:45] {1160} INFO - at 158.5s,\tbest rf's error=0.3922,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:45] {1012} INFO - iteration 90, current learner rf\n",
"[flaml.automl: 07-06 10:22:45] {1160} INFO - at 158.9s,\tbest rf's error=0.3922,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:45] {1012} INFO - iteration 91, current learner rf\n",
"[flaml.automl: 07-06 10:22:46] {1160} INFO - at 159.6s,\tbest rf's error=0.3851,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:46] {1012} INFO - iteration 92, current learner rf\n",
"[flaml.automl: 07-06 10:22:46] {1160} INFO - at 159.9s,\tbest rf's error=0.3851,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:46] {1012} INFO - iteration 93, current learner extra_tree\n",
"[flaml.automl: 07-06 10:22:46] {1160} INFO - at 160.0s,\tbest extra_tree's error=0.3875,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:46] {1012} INFO - iteration 94, current learner rf\n",
"[flaml.automl: 07-06 10:22:47] {1160} INFO - at 160.5s,\tbest rf's error=0.3851,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:47] {1012} INFO - iteration 95, current learner rf\n",
"[flaml.automl: 07-06 10:22:48] {1160} INFO - at 161.2s,\tbest rf's error=0.3844,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:22:48] {1012} INFO - iteration 96, current learner lgbm\n",
"[flaml.automl: 07-06 10:23:04] {1160} INFO - at 178.0s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:04] {1012} INFO - iteration 97, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:05] {1160} INFO - at 178.4s,\tbest extra_tree's error=0.3860,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:05] {1012} INFO - iteration 98, current learner rf\n",
"[flaml.automl: 07-06 10:23:05] {1160} INFO - at 178.8s,\tbest rf's error=0.3844,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:05] {1012} INFO - iteration 99, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:06] {1160} INFO - at 179.6s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:06] {1012} INFO - iteration 100, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:06] {1160} INFO - at 180.0s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:06] {1012} INFO - iteration 101, current learner lgbm\n",
"[flaml.automl: 07-06 10:23:11] {1160} INFO - at 184.2s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:11] {1012} INFO - iteration 102, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:12] {1160} INFO - at 185.7s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:12] {1012} INFO - iteration 103, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:13] {1160} INFO - at 186.2s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:13] {1012} INFO - iteration 104, current learner lgbm\n",
"[flaml.automl: 07-06 10:23:55] {1160} INFO - at 228.7s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:55] {1012} INFO - iteration 105, current learner extra_tree\n",
"[flaml.automl: 07-06 10:23:55] {1160} INFO - at 229.1s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:55] {1012} INFO - iteration 106, current learner lgbm\n",
"[flaml.automl: 07-06 10:23:58] {1160} INFO - at 231.2s,\tbest lgbm's error=0.3281,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:23:58] {1012} INFO - iteration 107, current learner catboost\n",
"[flaml.automl: 07-06 10:24:00] {1160} INFO - at 233.9s,\tbest catboost's error=0.3472,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:24:00] {1012} INFO - iteration 108, current learner extra_tree\n",
"[flaml.automl: 07-06 10:24:01] {1160} INFO - at 234.1s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3281\n",
"[flaml.automl: 07-06 10:24:01] {1012} INFO - iteration 109, current learner lgbm\n",
"[flaml.automl: 07-06 10:24:09] {1160} INFO - at 242.2s,\tbest lgbm's error=0.3261,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:09] {1012} INFO - iteration 110, current learner extra_tree\n",
"[flaml.automl: 07-06 10:24:09] {1160} INFO - at 243.0s,\tbest extra_tree's error=0.3824,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:09] {1012} INFO - iteration 111, current learner extra_tree\n",
"[flaml.automl: 07-06 10:24:12] {1160} INFO - at 245.6s,\tbest extra_tree's error=0.3813,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:12] {1012} INFO - iteration 112, current learner lgbm\n",
"[flaml.automl: 07-06 10:24:21] {1160} INFO - at 254.3s,\tbest lgbm's error=0.3261,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:21] {1012} INFO - iteration 113, current learner extra_tree\n",
"[flaml.automl: 07-06 10:24:25] {1160} INFO - at 258.7s,\tbest extra_tree's error=0.3813,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:25] {1012} INFO - iteration 114, current learner rf\n",
"[flaml.automl: 07-06 10:24:26] {1160} INFO - at 259.7s,\tbest rf's error=0.3821,\tbest lgbm's error=0.3261\n",
"[flaml.automl: 07-06 10:24:26] {1012} INFO - iteration 115, current learner lrl1\n",
"/Users/qingyun/miniconda3/envs/py38/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
"Some experienced automl users may have a preferred model to tune or may already have a reasonably by-hand-tuned model before launching the automl experiment. They need to select optimal configurations for the customized model mixed with standard built-in learners. \n",
"\n",
"FLAML can easily incorporate customized/new learners (preferably with sklearn API) provided by users in a real-time manner, as demonstrated below."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Example of Regularized Greedy Forest\n",
"\n",
"[Regularized Greedy Forest](https://arxiv.org/abs/1109.0887) (RGF) is a machine learning method currently not included in FLAML. The RGF has many tuning parameters, the most critical of which are: `[max_leaf, n_iter, n_tree_search, opt_interval, min_samples_leaf]`. To run a customized/new learner, the user needs to provide the following information:\n",
"* an implementation of the customized/new learner\n",
"* a list of hyperparameter names and types\n",
"* rough ranges of hyperparameters (i.e., upper/lower bounds)\n",
"* choose initial value corresponding to low cost for cost-related hyperparameters (e.g., initial value for max_leaf and n_iter should be small)\n",
"\n",
"In this example, the above information for RGF is wrapped in a python class called *MyRegularizedGreedyForest* that exposes the hyperparameters."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"''' SKLearnEstimator is the super class for a sklearn learner '''\n",
"[flaml.automl: 07-06 10:25:22] {908} INFO - Evaluation method: holdout\n",
"[flaml.automl: 07-06 10:25:22] {607} INFO - Using StratifiedKFold\n",
"[flaml.automl: 07-06 10:25:22] {929} INFO - Minimizing error metric: 1-accuracy\n",
"[flaml.automl: 07-06 10:25:22] {948} INFO - List of ML learners in AutoML Run: ['RGF', 'lgbm', 'rf', 'xgboost']\n",
"[flaml.automl: 07-06 10:25:22] {1012} INFO - iteration 0, current learner RGF\n",
"/Users/qingyun/miniconda3/envs/py38/lib/python3.8/site-packages/rgf/utils.py:224: UserWarning: Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.\n",