autogen/test/test_split.py

63 lines
1.6 KiB
Python
Raw Normal View History

2020-12-04 09:40:27 -08:00
import unittest
from sklearn.datasets import fetch_openml
from flaml.automl import AutoML
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
dataset = "credit"
2020-12-04 09:40:27 -08:00
def _test(split_type):
automl = AutoML()
automl_settings = {
"time_budget": 2,
# "metric": 'accuracy',
"task": 'classification',
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"log_training_metric": True,
"split_type": split_type,
}
X, y = fetch_openml(name=dataset, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random_state=42)
2020-12-04 09:40:27 -08:00
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
pred = automl.predict(X_test)
acc = accuracy_score(y_test, pred)
print(acc)
def _test_uniform():
2020-12-04 09:40:27 -08:00
_test(split_type="uniform")
def test_groups():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": 'classification',
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"eval_method": "cv",
"groups": np.random.randint(low=0, high=10, size=len(y)),
}
automl.fit(X, y, **automl_settings)
2020-12-04 09:40:27 -08:00
if __name__ == "__main__":
unittest.main()