"Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"# AutoML with FLAML Library\n",
"\n",
"\n",
"## 1. Introduction\n",
"\n",
"FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
"with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy \n",
"to use and extend, such as adding new learners. FLAML can \n",
"- serve as an economical AutoML engine,\n",
"- be used as a fast hyperparameter tuning tool, or \n",
"- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
" tuning tasks.\n",
"\n",
"In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library.\n",
"\n",
"FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` option:\n",
"```bash\n",
"pip install flaml[notebook]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install flaml[notebook];"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## 2. Classification Example\n",
"### Load data and preprocess\n",
"\n",
"Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
"In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"''' import AutoML class from flaml package '''\n",
"[flaml.automl: 04-07 09:18:58] {993} INFO - iteration 2, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:58] {1141} INFO - at 0.9s,\tbest lgbm's error=0.3672,\tbest lgbm's error=0.3672\n",
"[flaml.automl: 04-07 09:18:58] {993} INFO - iteration 3, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:58] {1141} INFO - at 1.0s,\tbest lgbm's error=0.3672,\tbest lgbm's error=0.3672\n",
"[flaml.automl: 04-07 09:18:58] {993} INFO - iteration 4, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:58] {1141} INFO - at 1.1s,\tbest lgbm's error=0.3648,\tbest lgbm's error=0.3648\n",
"[flaml.automl: 04-07 09:18:58] {993} INFO - iteration 5, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.3s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 6, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.4s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 7, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.5s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 8, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.6s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 9, current learner lgbm\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.8s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 10, current learner xgboost\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.8s,\tbest xgboost's error=0.3787,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 11, current learner xgboost\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 1.9s,\tbest xgboost's error=0.3768,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 12, current learner extra_tree\n",
"[flaml.automl: 04-07 09:18:59] {1141} INFO - at 2.1s,\tbest extra_tree's error=0.3985,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:18:59] {993} INFO - iteration 13, current learner extra_tree\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 2.2s,\tbest extra_tree's error=0.3985,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 14, current learner extra_tree\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 2.4s,\tbest extra_tree's error=0.3971,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 15, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 2.5s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 16, current learner rf\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 2.7s,\tbest rf's error=0.4017,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 17, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 2.8s,\tbest xgboost's error=0.3746,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 18, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:00] {1141} INFO - at 3.0s,\tbest lgbm's error=0.3639,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:00] {993} INFO - iteration 19, current learner rf\n",
"[flaml.automl: 04-07 09:19:01] {1141} INFO - at 3.2s,\tbest rf's error=0.4017,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:01] {993} INFO - iteration 20, current learner rf\n",
"[flaml.automl: 04-07 09:19:01] {1141} INFO - at 3.4s,\tbest rf's error=0.3993,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:01] {993} INFO - iteration 21, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:01] {1141} INFO - at 3.5s,\tbest xgboost's error=0.3746,\tbest lgbm's error=0.3639\n",
"[flaml.automl: 04-07 09:19:01] {993} INFO - iteration 22, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:01] {1141} INFO - at 3.8s,\tbest lgbm's error=0.3555,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:01] {993} INFO - iteration 23, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:01] {1141} INFO - at 4.0s,\tbest lgbm's error=0.3555,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:01] {993} INFO - iteration 24, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:02] {1141} INFO - at 4.2s,\tbest xgboost's error=0.3627,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:02] {993} INFO - iteration 25, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:02] {1141} INFO - at 4.4s,\tbest xgboost's error=0.3627,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:02] {993} INFO - iteration 26, current learner rf\n",
"[flaml.automl: 04-07 09:19:02] {1141} INFO - at 4.9s,\tbest rf's error=0.3993,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:02] {993} INFO - iteration 27, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:02] {1141} INFO - at 5.1s,\tbest xgboost's error=0.3627,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:02] {993} INFO - iteration 28, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:03] {1141} INFO - at 5.3s,\tbest xgboost's error=0.3627,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:03] {993} INFO - iteration 29, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:04] {1141} INFO - at 6.2s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:04] {993} INFO - iteration 30, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:04] {1141} INFO - at 6.8s,\tbest lgbm's error=0.3555,\tbest lgbm's error=0.3555\n",
"[flaml.automl: 04-07 09:19:04] {993} INFO - iteration 31, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:05] {1141} INFO - at 8.1s,\tbest lgbm's error=0.3524,\tbest lgbm's error=0.3524\n",
"[flaml.automl: 04-07 09:19:05] {993} INFO - iteration 32, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:06] {1141} INFO - at 8.9s,\tbest lgbm's error=0.3524,\tbest lgbm's error=0.3524\n",
"[flaml.automl: 04-07 09:19:06] {993} INFO - iteration 33, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:07] {1141} INFO - at 9.6s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3524\n",
"[flaml.automl: 04-07 09:19:07] {993} INFO - iteration 34, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:13] {1141} INFO - at 15.8s,\tbest lgbm's error=0.3498,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:13] {993} INFO - iteration 35, current learner catboost\n",
"[flaml.automl: 04-07 09:19:16] {1141} INFO - at 18.5s,\tbest catboost's error=0.3644,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:16] {993} INFO - iteration 36, current learner catboost\n",
"[flaml.automl: 04-07 09:19:17] {1141} INFO - at 19.3s,\tbest catboost's error=0.3644,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:17] {993} INFO - iteration 37, current learner extra_tree\n",
"[flaml.automl: 04-07 09:19:17] {1141} INFO - at 19.7s,\tbest extra_tree's error=0.3971,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:17] {993} INFO - iteration 38, current learner catboost\n",
"[flaml.automl: 04-07 09:19:18] {1141} INFO - at 20.6s,\tbest catboost's error=0.3608,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:18] {993} INFO - iteration 39, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:18] {1141} INFO - at 21.0s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:18] {993} INFO - iteration 40, current learner rf\n",
"[flaml.automl: 04-07 09:19:19] {1141} INFO - at 21.7s,\tbest rf's error=0.3936,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:19] {993} INFO - iteration 41, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:20] {1141} INFO - at 22.4s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:20] {993} INFO - iteration 42, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:21] {1141} INFO - at 23.4s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3498\n",
"[flaml.automl: 04-07 09:19:21] {993} INFO - iteration 43, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:25] {1141} INFO - at 27.3s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:25] {993} INFO - iteration 44, current learner catboost\n",
"[flaml.automl: 04-07 09:19:25] {1141} INFO - at 27.8s,\tbest catboost's error=0.3608,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:25] {993} INFO - iteration 45, current learner extra_tree\n",
"[flaml.automl: 04-07 09:19:26] {1141} INFO - at 28.1s,\tbest extra_tree's error=0.3923,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:26] {993} INFO - iteration 46, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:26] {1141} INFO - at 28.6s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:26] {993} INFO - iteration 47, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:35] {1141} INFO - at 37.6s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:35] {993} INFO - iteration 48, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:35] {1141} INFO - at 38.1s,\tbest xgboost's error=0.3559,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:35] {993} INFO - iteration 49, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:36] {1141} INFO - at 38.6s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:36] {993} INFO - iteration 50, current learner catboost\n",
"[flaml.automl: 04-07 09:19:36] {1141} INFO - at 38.9s,\tbest catboost's error=0.3608,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:36] {993} INFO - iteration 51, current learner extra_tree\n",
"[flaml.automl: 04-07 09:19:36] {1141} INFO - at 39.1s,\tbest extra_tree's error=0.3895,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:36] {993} INFO - iteration 52, current learner rf\n",
"[flaml.automl: 04-07 09:19:37] {1141} INFO - at 39.4s,\tbest rf's error=0.3904,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:37] {993} INFO - iteration 53, current learner rf\n",
"[flaml.automl: 04-07 09:19:37] {1141} INFO - at 39.8s,\tbest rf's error=0.3857,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:37] {993} INFO - iteration 54, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:42] {1141} INFO - at 44.5s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:42] {993} INFO - iteration 55, current learner lgbm\n",
"[flaml.automl: 04-07 09:19:43] {1141} INFO - at 45.1s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:43] {993} INFO - iteration 56, current learner xgboost\n",
"[flaml.automl: 04-07 09:19:46] {1141} INFO - at 48.4s,\tbest xgboost's error=0.3553,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:46] {993} INFO - iteration 57, current learner rf\n",
"[flaml.automl: 04-07 09:19:46] {1141} INFO - at 48.7s,\tbest rf's error=0.3857,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:46] {993} INFO - iteration 58, current learner rf\n",
"[flaml.automl: 04-07 09:19:48] {1141} INFO - at 50.4s,\tbest rf's error=0.3808,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:48] {993} INFO - iteration 59, current learner catboost\n",
"[flaml.automl: 04-07 09:19:49] {1141} INFO - at 51.5s,\tbest catboost's error=0.3608,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:19:49] {993} INFO - iteration 60, current learner lgbm\n",
"[flaml.automl: 04-07 09:20:10] {1141} INFO - at 72.6s,\tbest lgbm's error=0.3487,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:20:10] {993} INFO - iteration 61, current learner extra_tree\n",
"[flaml.automl: 04-07 09:20:10] {1141} INFO - at 72.9s,\tbest extra_tree's error=0.3877,\tbest lgbm's error=0.3487\n",
"[flaml.automl: 04-07 09:20:10] {993} INFO - iteration 62, current learner lgbm\n",
"[flaml.automl: 04-07 09:20:23] {1141} INFO - at 85.6s,\tbest lgbm's error=0.3428,\tbest lgbm's error=0.3428\n",
"[flaml.automl: 04-07 09:20:23] {993} INFO - iteration 63, current learner xgboost\n",
"[flaml.automl: 04-07 09:20:25] {1141} INFO - at 87.8s,\tbest xgboost's error=0.3553,\tbest lgbm's error=0.3428\n",
"[flaml.automl: 04-07 09:20:25] {993} INFO - iteration 64, current learner extra_tree\n",
"[flaml.automl: 04-07 09:20:25] {1141} INFO - at 88.1s,\tbest extra_tree's error=0.3877,\tbest lgbm's error=0.3428\n",
"[flaml.automl: 04-07 09:20:25] {993} INFO - iteration 65, current learner lgbm\n",
"[flaml.automl: 04-07 09:20:49] {1141} INFO - at 111.4s,\tbest lgbm's error=0.3379,\tbest lgbm's error=0.3379\n",
"[flaml.automl: 04-07 09:20:49] {993} INFO - iteration 66, current learner rf\n",
"[flaml.automl: 04-07 09:20:50] {1141} INFO - at 113.1s,\tbest rf's error=0.3808,\tbest lgbm's error=0.3379\n",
"[flaml.automl: 04-07 09:20:50] {993} INFO - iteration 67, current learner catboost\n",
"[flaml.automl: 04-07 09:20:51] {1141} INFO - at 113.4s,\tbest catboost's error=0.3608,\tbest lgbm's error=0.3379\n",
"[flaml.automl: 04-07 09:20:51] {993} INFO - iteration 68, current learner rf\n",
"[flaml.automl: 04-07 09:20:51] {1141} INFO - at 114.0s,\tbest rf's error=0.3808,\tbest lgbm's error=0.3379\n",
"[flaml.automl: 04-07 09:20:51] {993} INFO - iteration 69, current learner lgbm\n",
"[flaml.automl: 04-07 09:21:01] {1141} INFO - at 123.4s,\tbest lgbm's error=0.3361,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:01] {993} INFO - iteration 70, current learner lgbm\n",
"[flaml.automl: 04-07 09:21:25] {1141} INFO - at 148.1s,\tbest lgbm's error=0.3361,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:25] {993} INFO - iteration 71, current learner catboost\n",
"[flaml.automl: 04-07 09:21:27] {1141} INFO - at 149.3s,\tbest catboost's error=0.3530,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:27] {993} INFO - iteration 72, current learner catboost\n",
"[flaml.automl: 04-07 09:21:28] {1141} INFO - at 150.5s,\tbest catboost's error=0.3530,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:28] {993} INFO - iteration 73, current learner extra_tree\n",
"[flaml.automl: 04-07 09:21:29] {1141} INFO - at 152.1s,\tbest extra_tree's error=0.3827,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:29] {993} INFO - iteration 74, current learner catboost\n",
"[flaml.automl: 04-07 09:21:32] {1141} INFO - at 154.2s,\tbest catboost's error=0.3530,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:32] {993} INFO - iteration 75, current learner extra_tree\n",
"[flaml.automl: 04-07 09:21:34] {1141} INFO - at 156.4s,\tbest extra_tree's error=0.3827,\tbest lgbm's error=0.3361\n",
"[flaml.automl: 04-07 09:21:34] {993} INFO - iteration 76, current learner lgbm\n",
"[flaml.automl: 04-07 09:21:49] {1141} INFO - at 171.2s,\tbest lgbm's error=0.3297,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:49] {993} INFO - iteration 77, current learner lrl1\n",
"No init config given to FLOW2. Using random initial config.For cost-frugal search, consider providing init values for cost-related hps via 'init_config'.\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:49] {1141} INFO - at 171.5s,\tbest lrl1's error=0.4337,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:49] {993} INFO - iteration 78, current learner lrl1\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:49] {1141} INFO - at 171.8s,\tbest lrl1's error=0.4337,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:49] {993} INFO - iteration 79, current learner lrl1\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:50] {1141} INFO - at 172.2s,\tbest lrl1's error=0.4337,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:50] {993} INFO - iteration 80, current learner lrl1\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:50] {1141} INFO - at 172.5s,\tbest lrl1's error=0.4337,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:50] {993} INFO - iteration 81, current learner lrl1\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:50] {1141} INFO - at 172.8s,\tbest lrl1's error=0.4337,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:50] {993} INFO - iteration 82, current learner lrl1\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 04-07 09:21:51] {1141} INFO - at 174.0s,\tbest lrl1's error=0.4334,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:51] {993} INFO - iteration 83, current learner rf\n",
"[flaml.automl: 04-07 09:21:55] {1141} INFO - at 177.7s,\tbest rf's error=0.3808,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:55] {993} INFO - iteration 84, current learner catboost\n",
"[flaml.automl: 04-07 09:21:56] {1141} INFO - at 178.6s,\tbest catboost's error=0.3530,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:21:56] {993} INFO - iteration 85, current learner catboost\n",
"[flaml.automl: 04-07 09:22:06] {1141} INFO - at 188.6s,\tbest catboost's error=0.3481,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:06] {993} INFO - iteration 86, current learner extra_tree\n",
"[flaml.automl: 04-07 09:22:06] {1141} INFO - at 189.0s,\tbest extra_tree's error=0.3827,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:06] {993} INFO - iteration 87, current learner catboost\n",
"[flaml.automl: 04-07 09:22:12] {1141} INFO - at 195.1s,\tbest catboost's error=0.3481,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:12] {993} INFO - iteration 88, current learner catboost\n",
"[flaml.automl: 04-07 09:22:34] {1141} INFO - at 216.6s,\tbest catboost's error=0.3481,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:34] {993} INFO - iteration 89, current learner lgbm\n",
"[flaml.automl: 04-07 09:22:43] {1141} INFO - at 225.8s,\tbest lgbm's error=0.3297,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:43] {993} INFO - iteration 90, current learner lgbm\n",
"[flaml.automl: 04-07 09:22:57] {1141} INFO - at 239.3s,\tbest lgbm's error=0.3297,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:57] {993} INFO - iteration 91, current learner extra_tree\n",
"[flaml.automl: 04-07 09:22:59] {1141} INFO - at 242.0s,\tbest extra_tree's error=0.3827,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:22:59] {993} INFO - iteration 92, current learner lgbm\n",
"[flaml.automl: 04-07 09:23:47] {1141} INFO - at 289.9s,\tbest lgbm's error=0.3297,\tbest lgbm's error=0.3297\n",
"[flaml.automl: 04-07 09:23:47] {993} INFO - iteration 93, current learner extra_tree\n",
"[flaml.automl: 04-07 09:23:47] {1149} INFO - no enough budget for learner extra_tree\n",
"[flaml.automl: 04-07 09:23:47] {993} INFO - iteration 94, current learner catboost\n",
"[flaml.automl: 04-07 09:23:47] {1149} INFO - no enough budget for learner catboost\n",
"[flaml.automl: 04-07 09:23:47] {993} INFO - iteration 95, current learner rf\n",
"[flaml.automl: 04-07 09:23:47] {1149} INFO - no enough budget for learner rf\n",
"[flaml.automl: 04-07 09:23:47] {993} INFO - iteration 96, current learner xgboost\n",
"[flaml.automl: 04-07 09:23:47] {1149} INFO - no enough budget for learner xgboost\n",
"[flaml.automl: 04-07 09:23:47] {993} INFO - iteration 97, current learner lrl1\n",
"[flaml.automl: 04-07 09:23:47] {1149} INFO - no enough budget for learner lrl1\n",
"[flaml.automl: 04-07 09:23:47] {1187} INFO - selected model: LGBMClassifier(learning_rate=0.0710308200604776, max_bin=1023,\n",
"Some experienced automl users may have a preferred model to tune or may already have a reasonably by-hand-tuned model before launching the automl experiment. They need to select optimal configurations for the customized model mixed with standard built-in learners. \n",
"\n",
"FLAML can easily incorporate customized/new learners (preferably with sklearn API) provided by users in a real-time manner, as demonstrated below."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Example of Regularized Greedy Forest\n",
"\n",
"[Regularized Greedy Forest](https://arxiv.org/abs/1109.0887) (RGF) is a machine learning method currently not included in FLAML. The RGF has many tuning parameters, the most critical of which are: `[max_leaf, n_iter, n_tree_search, opt_interval, min_samples_leaf]`. To run a customized/new learner, the user needs to provide the following information:\n",
"* an implementation of the customized/new learner\n",
"* a list of hyperparameter names and types\n",
"* rough ranges of hyperparameters (i.e., upper/lower bounds)\n",
"* choose initial value corresponding to low cost for cost-related hyperparameters (e.g., initial value for max_leaf and n_iter should be small)\n",
"\n",
"In this example, the above information for RGF is wrapped in a python class called *MyRegularizedGreedyForest* that exposes the hyperparameters."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"''' SKLearnEstimator is the super class for a sklearn learner '''\n",
"[flaml.automl: 04-07 09:24:01] {890} INFO - Evaluation method: holdout\n",
"[flaml.automl: 04-07 09:24:01] {596} INFO - Using StratifiedKFold\n",
"[flaml.automl: 04-07 09:24:01] {911} INFO - Minimizing error metric: 1-accuracy\n",
"[flaml.automl: 04-07 09:24:01] {929} INFO - List of ML learners in AutoML Run: ['RGF', 'lgbm', 'rf', 'xgboost']\n",
"[flaml.automl: 04-07 09:24:01] {993} INFO - iteration 0, current learner RGF\n",
"/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/rgf/utils.py:225: UserWarning: Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.\n",