autogen/website/docs/Examples/Integrate - AzureML.md

51 lines
1.6 KiB
Markdown
Raw Normal View History

FLAML can be used together with AzureML and mlflow.
### Prerequisites
Install the [azureml] option.
```bash
pip install "flaml[azureml]"
```
Setup a AzureML workspace:
```python
from azureml.core import Workspace
ws = Workspace.create(name='myworkspace', subscription_id='<azure-subscription-id>',resource_group='myresourcegroup')
```
### Enable mlflow in AzureML workspace
```python
import mlflow
from azureml.core import Workspace
ws = Workspace.from_config()
mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())
```
### Start an AutoML run
```python
from flaml.data import load_openml_dataset
# Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure.
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
from flaml import AutoML
automl = AutoML()
settings = {
"time_budget": 60, # total running time in seconds
"metric": "accuracy", # metric to optimize
"task": "classification", # task type
"log_file_name": "airlines_experiment.log", # flaml log file
}
mlflow.set_experiment("flaml") # the experiment name in AzureML workspace
with mlflow.start_run() as run: # create a mlflow run
automl.fit(X_train=X_train, y_train=y_train, **settings)
```
The metrics in the run will be automatically logged in an experiment named "flaml" in your AzureML workspace.
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_azureml.ipynb)