2021-02-05 21:41:14 -08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. \n",
"\n",
"Licensed under the MIT License.\n",
"\n",
"# Run FLAML in AzureML\n",
"\n",
"\n",
"## 1. Introduction\n",
"\n",
"FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
"with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy \n",
"to use and extend, such as adding new learners. FLAML can \n",
"- serve as an economical AutoML engine,\n",
"- be used as a fast hyperparameter tuning tool, or \n",
"- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
" tuning tasks.\n",
"\n",
2021-02-22 22:10:41 -08:00
"In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library together with AzureML.\n",
2021-02-05 21:41:14 -08:00
"\n",
"FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` and `azureml` option:\n",
"```bash\n",
"pip install flaml[notebook,azureml]\n",
"```"
]
},
{
"cell_type": "code",
2021-02-17 14:03:19 -08:00
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install flaml[notebook,azureml]"
]
},
2021-02-22 22:10:41 -08:00
{
2021-07-20 17:00:44 -07:00
"cell_type": "markdown",
"metadata": {},
2021-02-22 22:10:41 -08:00
"source": [
"### Enable mlflow in AzureML workspace"
2021-07-20 17:00:44 -07:00
]
2021-02-22 22:10:41 -08:00
},
2021-02-17 14:03:19 -08:00
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 1,
2021-02-05 21:41:14 -08:00
"metadata": {},
"outputs": [],
"source": [
"import mlflow\n",
"from azureml.core import Workspace\n",
"\n",
"ws = Workspace.from_config()\n",
"mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
2021-02-22 22:10:41 -08:00
"## 2. Classification Example\n",
2021-02-05 21:41:14 -08:00
"### Load data and preprocess\n",
"\n",
"Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 2,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
},
"tags": []
},
"outputs": [
{
2021-02-22 22:10:41 -08:00
"name": "stdout",
2021-07-20 17:00:44 -07:00
"output_type": "stream",
2021-02-05 21:41:14 -08:00
"text": [
2021-02-22 22:10:41 -08:00
"load dataset from ./openml_ds1169.pkl\n",
2021-02-05 21:41:14 -08:00
"Dataset name: airlines\n",
"X_train.shape: (404537, 7), y_train.shape: (404537,);\n",
"X_test.shape: (134846, 7), y_test.shape: (134846,)\n"
]
}
],
"source": [
"from flaml.data import load_openml_dataset\n",
2021-04-08 09:29:55 -07:00
"X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir='./')"
2021-02-05 21:41:14 -08:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Run FLAML\n",
"In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 3,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"''' import AutoML class from flaml package '''\n",
"from flaml import AutoML\n",
"automl = AutoML()"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 4,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"settings = {\n",
2021-04-08 09:29:55 -07:00
" \"time_budget\": 60, # total running time in seconds\n",
" \"metric\": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','f1','log_loss','mae','mse','r2']\n",
" \"estimator_list\": ['lgbm', 'rf', 'xgboost'], # list of ML learners\n",
" \"task\": 'classification', # task type \n",
" \"sample\": False, # whether to subsample training data\n",
" \"log_file_name\": 'airlines_experiment.log', # flaml log file\n",
2021-02-05 21:41:14 -08:00
"}"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 5,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
2021-04-08 09:29:55 -07:00
"outputs": [],
2021-02-05 21:41:14 -08:00
"source": [
"mlflow.set_experiment(\"flaml\")\n",
"with mlflow.start_run() as run:\n",
2021-02-22 22:10:41 -08:00
" '''The main flaml automl API'''\n",
2021-04-08 09:29:55 -07:00
" automl.fit(X_train=X_train, y_train=y_train, **settings)"
2021-02-05 21:41:14 -08:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Best model and metric"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 6,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
2021-07-20 17:00:44 -07:00
"output_type": "stream",
2021-02-05 21:41:14 -08:00
"text": [
2021-07-20 17:00:44 -07:00
"Best ML leaner: lgbm\n",
"Best hyperparmeter config: {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}\n",
"Best accuracy on validation data: 0.6229\n",
"Training duration of best run: 1.288 s\n"
2021-02-05 21:41:14 -08:00
]
}
],
"source": [
"''' retrieve best config and best learner'''\n",
"print('Best ML leaner:', automl.best_estimator)\n",
"print('Best hyperparmeter config:', automl.best_config)\n",
2021-04-08 09:29:55 -07:00
"print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))\n",
2021-02-05 21:41:14 -08:00
"print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 7,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
2021-04-08 09:29:55 -07:00
"LGBMClassifier(max_bin=255, n_estimators=4, num_leaves=4, objective='binary',\n",
" reg_alpha=0.0009765625, reg_lambda=1.0)"
2021-02-05 21:41:14 -08:00
]
},
2021-07-20 17:00:44 -07:00
"execution_count": 7,
2021-02-05 21:41:14 -08:00
"metadata": {},
2021-07-20 17:00:44 -07:00
"output_type": "execute_result"
2021-02-05 21:41:14 -08:00
}
],
"source": [
"automl.model"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 8,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
2021-03-16 22:13:35 -07:00
"''' pickle and save the automl object '''\n",
2021-02-05 21:41:14 -08:00
"import pickle\n",
2021-03-16 22:13:35 -07:00
"with open('automl.pkl', 'wb') as f:\n",
" pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
2021-02-05 21:41:14 -08:00
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 9,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
2021-07-20 17:00:44 -07:00
"output_type": "stream",
2021-02-05 21:41:14 -08:00
"text": [
2021-07-20 17:00:44 -07:00
"Predicted labels [1 0 1 ... 0 0 0]\n",
"True labels [0 0 0 ... 0 1 0]\n"
2021-02-05 21:41:14 -08:00
]
}
],
"source": [
"''' compute predictions of testing dataset ''' \n",
"y_pred = automl.predict(X_test)\n",
"print('Predicted labels', y_pred)\n",
"print('True labels', y_test)\n",
"y_pred_proba = automl.predict_proba(X_test)[:,1]"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 10,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
2021-07-20 17:00:44 -07:00
"output_type": "stream",
2021-02-05 21:41:14 -08:00
"text": [
2021-07-20 17:00:44 -07:00
"accuracy = 0.6262773830888569\n",
"roc_auc = 0.6402112531029138\n",
"log_loss = 0.6637970847245668\n",
"f1 = 0.35105656927257045\n"
2021-02-05 21:41:14 -08:00
]
}
],
"source": [
"''' compute different metric values on testing dataset'''\n",
"from flaml.ml import sklearn_metric_loss_score\n",
"print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))\n",
"print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))\n",
2021-07-20 17:00:44 -07:00
"print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))"
2021-02-05 21:41:14 -08:00
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Log history"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 11,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "subslide"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
2021-07-20 17:00:44 -07:00
"output_type": "stream",
2021-02-05 21:41:14 -08:00
"text": [
2021-04-08 09:29:55 -07:00
"{'Current Learner': 'lgbm', 'Current Sample': 364083, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}}\n"
2021-02-05 21:41:14 -08:00
]
}
],
"source": [
"from flaml.data import get_output_from_log\n",
"time_history, best_valid_loss_history, valid_loss_history, config_history, train_loss_history = \\\n",
" get_output_from_log(filename = settings['log_file_name'], time_budget = 60)\n",
"\n",
"for config in config_history:\n",
" print(config)"
]
},
{
"cell_type": "code",
2021-02-22 22:10:41 -08:00
"execution_count": 12,
2021-02-05 21:41:14 -08:00
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
2021-07-20 17:00:44 -07:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3de5xdVX338c+XcJc7CZSbXGqCSrUgI17wArZApCKoiGBtEVuotVitladQa8uDD31hrfbRmmoDpQiVIlCI0YqBys0CgUzkmtCEEFAmIAmQKCICCd/+sdeBzWHP5CTMmTOX7/v1Oq85e+219vmdPTPnd/bae68l20RERLTboNcBRETE6JQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSJiPUh6q6RFvY4jopuSIGLMkXS/pN/uZQy2f2h7725tX9Jhkq6X9LikFZKuk/Tubr1eRJMkiIgGkib18LWPBi4Bzgd2BXYE/ho4Yj22JUn5P4/1kj+cGDckbSDpVEn3SnpU0sWStqutv0TSTyX9rHw736e27jxJX5P0PUlPAAeXI5VPS7qjtPmWpE1L/YMkDdTaD1q3rP8/kh6S9KCkP5RkSa9oeA8CvgR8zvY5tn9m+1nb19k+sdQ5XdK/1drsUba3YVm+VtKZkm4AfgmcIqm/7XX+TNLs8nwTSX8v6SeSHpb0dUmbvcRfR4wDSRAxnnwcOAp4O7AzsBKYUVt/BTAV2AH4EfDNtvYfBM4EtgT+u5QdA0wH9gReC3x4iNdvrCtpOvAp4LeBVwAHDbGNvYHdgEuHqNOJ3wNOonovXwf2ljS1tv6DwIXl+VnANGDfEt8uVEcsMcElQcR48lHgM7YHbD8FnA4c3fpmbftc24/X1v2mpK1r7b9t+4byjf1Xpewrth+0/RjwHaoP0cEMVvcY4F9tL7D9y/Lag9m+/Hyo0zc9iPPK6622/TPg28BxACVRvBKYXY5YTgL+zPZjth8H/hY49iW+fowDSRAxnuwOXC5plaRVwN3AGmBHSZMknVW6n34O3F/aTK61f6Bhmz+tPf8lsMUQrz9Y3Z3btt30Oi2Plp87DVGnE+2vcSElQVAdPcwqyWoKsDkwv7bfvl/KY4JLgojx5AHgnba3qT02tb2M6kPxSKpunq2BPUob1dp3a2jjh6hONrfsNkTdRVTv431D1HmC6kO95dca6rS/l6uAKZL2pUoUre6lR4AngX1q+2xr20MlwpggkiBirNpI0qa1x4ZUfe1nStodQNIUSUeW+lsCT1F9Q9+cqhtlpFwMnCDpVZI2Bz47WEVX4+9/CvispBMkbVVOvr9F0sxS7TbgbZJeXrrITltbALafoboy6gvAdlQJA9vPAmcD/yBpBwBJu0g6bL3fbYwbSRAxVn2P6ptv63E68GVgNnClpMeBucAbSv3zgR8Dy4CFZd2IsH0F8BXgGmBJ7bWfGqT+pcAHgI8ADwIPA/+P6jwCtq8CvgXcAcwHvtthKBdSHUFdYnt1rfwvWnGV7rf/ojpZHhOcMmFQxMiS9CrgLmCTtg/qiFElRxARI0DSe8r9BtsCnwe+k+QQo10SRMTI+CNgOXAv1ZVVf9zbcCLWLl1MERHRKEcQERHRaMNeBzBcJk+e7D322KPXYUREjCnz589/xHbjjZHjJkHsscce9Pf3r71iREQ8R9KPB1uXLqaIiGiUBBEREY2SICIiolESRERENEqCiIiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBEREY2SICIiolESRERENEqCiIiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBEREY26miAkTZe0SNISSacOUucYSQslLZB0Ya18jaTbymN2N+OMiIgX69qc1JImATOAQ4ABYJ6k2bYX1upMBU4DDrS9UtIOtU08aXvfbsUXERFD6+YRxAHAEttLbT8NXAQc2VbnRGCG7ZUAtpd3MZ6IiFgH3UwQuwAP1JYHSlndNGCapBskzZU0vbZuU0n9pfyopheQdFKp079ixYrhjT4iYoLrWhfTOrz+VOAgYFfgekmvsb0K2N32Mkl7AVdLutP2vfXGtmcCMwH6+vo8sqFHRIxv3TyCWAbsVlvetZTVDQCzbT9j+z5gMVXCwPay8nMpcC2wXxdjjYiINt1MEPOAqZL2lLQxcCzQfjXSLKqjByRNpupyWippW0mb1MoPBBYSEREjpmtdTLZXSzoZmANMAs61vUDSGUC/7dll3aGSFgJrgFNsPyrpzcA/S3qWKomdVb/6KSIiuk/2+Oi67+vrc39/f6/DiIgYUyTNt93XtC53UkdERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdGoqwlC0nRJiyQtkXTqIHWOkbRQ0gJJF7at20rSgKSvdjPOiIh4sQ27tWFJk4AZwCHAADBP0mzbC2t1pgKnAQfaXilph7bNfA64vlsxRkTE4Lp5BHEAsMT2UttPAxcBR7bVORGYYXslgO3lrRWS9gd2BK7sYowRETGIbiaIXYAHassDpaxuGjBN0g2S5kqaDiBpA+CLwKeHegFJJ0nql9S/YsWKYQw9IiJ6fZJ6Q2AqcBBwHHC2pG2AjwHfsz0wVGPbM2332e6bMmVK14ONiJhIunYOAlgG7FZb3rWU1Q0AN9t+BrhP0mKqhPEm4K2SPgZsAWws6Re2G090R0TE8OvmEcQ8YKqkPSVtDBwLzG6rM4vq6AFJk6m6nJba/l3bL7e9B1U30/lJDhERI6trCcL2auBkYA5wN3Cx7QWSzpD07lJtDvCopIXANcApth/tVkwREdE52e51DMOir6/P/f39vQ4jImJMkTTfdl/TurUeQUjafvhDioiI0a6TLqa5ki6RdLgkdT2iiIgYFTpJENOAmcDvAfdI+ltJ07obVkRE9NpaE4QrV9k+jurO5+OBWyRdJ+lNXY8wIiJ6Yq33QZRzEB+iOoJ4GPg41eWq+wKXAHt2M8CIiOiNTm6Uuwm4ADiq7c7mfklf705YERHRa50kiL09yLWwtj8/zPFERMQo0clJ6ivL+EgASNpW0pwuxhQREaNAJwliiu1VrYUyNHf7vA0RETHOdJIg1kh6eWtB0u7A+Lj9OiIiBtXJOYjPAP8t6TpAwFuBk7oaVURE9NxaE4Tt70t6HfDGUvRJ2490N6yIiOi1TueDWAMsBzYFXi0J25krOiJiHOvkRrk/BD5BNeHPbVRHEjcB7+huaBER0UudnKT+BPB64Me2Dwb2A1YN3SQiIsa6ThLEr2z/CkDSJrb/B9i7u2FFRESvdXIOYqDcKDcLuErSSuDH3Q0rIiJ6rZOrmN5Tnp4u6Rpga+D7XY0qIiJ6bsgEIWkSsMD2KwFsXzciUUVERM8NeQ7C9hpgUf1O6oiImBg6OQexLbBA0i3AE61C2+/uWlQREdFznSSIz3Y9ioiIGHU6OUm93ucdJE0HvgxMAs6xfVZDnWOA06kGALzd9gfLgICXU3WBbQT8o+1MThQRMYI6uZP6cZ4fvXVjqg/sJ2xvtZZ2k4AZwCHAADBP0mzbC2t1pgKnAQfaXimpNYz4Q8CbbD8laQvgrtL2wXV8fxERsZ46OYLYsvVckoAjeX7gvqEcACyxvbS0vai0XVircyIwo8wxge3l5efTtTqb0NkNfRERMYzW6YPXlVnAYR1U3wV4oLY8UMrqpgHTJN0gaW7pkgJA0m6S7ijb+HzT0YOkkyT1S+pfsWLFuryViIhYi066mN5bW9wA6AN+NYyvPxU4iGowwOslvcb2KtsPAK+VtDMwS9Klth+uN7Y9E5gJ0NfXl0mMIiKGUSdXMR1Re74auJ+qq2htlgG71ZZ3LWV1A8DNtp8B7pO0mCphzGtVsP2gpLuoJiq6tIPXjYiIYdDJOYgT1nPb84CpkvakSgzHAh9sqzMLOA74V0mTqbqclkr
2021-05-08 02:50:50 +00:00
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"277.314375pt\" version=\"1.1\" viewBox=\"0 0 392.14375 277.314375\" width=\"392.14375pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n </style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 277.314375 \nL 392.14375 277.314375 \nL 392.14375 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 50.14375 239.758125 \nL 384.94375 239.758125 \nL 384.94375 22.318125 \nL 50.14375 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"PathCollection_1\">\n <defs>\n <path d=\"M 0 3 \nC 0.795609 3 1.55874 2.683901 2.12132 2.12132 \nC 2.683901 1.55874 3 0.795609 3 0 \nC 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \nC 1.55874 -2.683901 0.795609 -3 0 -3 \nC -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \nC -2.683901 -1.55874 -3 -0.795609 -3 0 \nC -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \nC -1.55874 2.683901 -0.795609 3 0 3 \nz\n\" id=\"m5ad51b6452\" style=\"stroke:#1f77b4;\"/>\n </defs>\n <g clip-path=\"url(#p373656e3eb)\">\n <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"217.54375\" xlink:href=\"#m5ad51b6452\" y=\"131.038125\"/>\n </g>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m53c392168c\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.144175\" xlink:href=\"#m53c392168c\" y=\"239.758125\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 1.700 -->\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <g transform=\"translate(49.830112 254.356562)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-55\"/>\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"222.65625\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"106.647657\" xlink:href=\"#m53c392168c\" y=\"239.758125\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 1.725 -->\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \
2021-07-20 17:00:44 -07:00
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
2021-02-05 21:41:14 -08:00
},
"metadata": {
"needs_background": "light"
2021-07-20 17:00:44 -07:00
},
"output_type": "display_data"
2021-02-05 21:41:14 -08:00
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"plt.title('Learning Curve')\n",
"plt.xlabel('Wall Clock Time (s)')\n",
"plt.ylabel('Validation Accuracy')\n",
2021-04-08 09:29:55 -07:00
"plt.scatter(time_history, 1 - np.array(valid_loss_history))\n",
"plt.step(time_history, 1 - np.array(best_valid_loss_history), where='post')\n",
2021-02-05 21:41:14 -08:00
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
2021-05-08 02:50:50 +00:00
"display_name": "Python 3.8.0 64-bit",
2021-02-05 21:41:14 -08:00
"metadata": {
"interpreter": {
2021-04-08 09:29:55 -07:00
"hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544"
2021-02-05 21:41:14 -08:00
}
2021-07-20 17:00:44 -07:00
},
"name": "python3"
2021-02-05 21:41:14 -08:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2021-05-08 02:50:50 +00:00
"version": "3.8.0-final"
2021-02-05 21:41:14 -08:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}