autogen/flaml/default/suggest.py

224 lines
9.5 KiB
Python
Raw Normal View History

import numpy as np
from sklearn.neighbors import NearestNeighbors
import logging
import pathlib
import json
from flaml.data import CLASSIFICATION, DataTransformer
from flaml.ml import get_estimator_class, get_classification_objective
LOCATION = pathlib.Path(__file__).parent.resolve()
logger = logging.getLogger(__name__)
CONFIG_PREDICTORS = {}
def meta_feature(task, X_train, y_train):
is_classification = task in CLASSIFICATION
n_row = X_train.shape[0]
n_feat = X_train.shape[1]
n_class = len(np.unique(y_train)) if is_classification else 0
percent_num = X_train.select_dtypes(include=np.number).shape[1] / n_feat
return (n_row, n_feat, n_class, percent_num)
def load_config_predictor(estimator_name, task, location=None):
key = f"{estimator_name}_{task}"
predictor = CONFIG_PREDICTORS.get(key)
if predictor:
return predictor
task = "multiclass" if task == "multi" else task
try:
location = location or LOCATION
with open(f"{location}/{estimator_name}/{task}.json", "r") as f:
CONFIG_PREDICTORS[key] = predictor = json.load(f)
except FileNotFoundError:
raise FileNotFoundError(
f"Portfolio has not been built for {estimator_name} on {task} task."
)
return predictor
def suggest_config(task, X, y, estimator_or_predictor, location=None, k=None):
"""Suggest a list of configs for the given task and training data.
The returned configs can be used as starting points for AutoML.fit().
`FLAML_sample_size` is removed from the configs.
"""
task = (
get_classification_objective(len(np.unique(y)))
if task == "classification"
else task
)
predictor = (
load_config_predictor(estimator_or_predictor, task, location)
if isinstance(estimator_or_predictor, str)
else estimator_or_predictor
)
assert predictor["version"] == "default"
prep = predictor["preprocessing"]
feature = meta_feature(task, X, y)
feature = (np.array(feature) - np.array(prep["center"])) / np.array(prep["scale"])
neighbors = predictor["neighbors"]
nn = NearestNeighbors(n_neighbors=1)
nn.fit([x["features"] for x in neighbors])
dist, ind = nn.kneighbors(feature.reshape(1, -1), return_distance=True)
logger.info(f"metafeature distance: {dist.item()}")
ind = int(ind.item())
choice = neighbors[ind]["choice"] if k is None else neighbors[ind]["choice"][:k]
configs = [predictor["portfolio"][x] for x in choice]
for config in configs:
hyperparams = config["hyperparameters"]
if hyperparams and "FLAML_sample_size" in hyperparams:
hyperparams.pop("FLAML_sample_size")
return configs
def suggest_learner(
task, X, y, estimator_or_predictor="all", estimator_list=None, location=None
):
"""Suggest best learner within estimator_list."""
configs = suggest_config(task, X, y, estimator_or_predictor, location)
if not estimator_list:
return configs[0]["class"]
for c in configs:
if c["class"] in estimator_list:
return c["class"]
return estimator_list[0]
def suggest_hyperparams(task, X, y, estimator_or_predictor, location=None):
"""Suggest hyperparameter configurations and an estimator class.
The configurations can be used to initialize the estimator class like lightgbm.LGBMRegressor.
Example:
```python
hyperparams, estimator_class = suggest_hyperparams("regression", X_train, y_train, "lgbm")
model = estimator_class(**hyperparams) # estimator_class is LGBMRegressor
model.fit(X_train, y_train)
```
Args:
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank',
'seq-classification', 'seq-regression'.
X: A dataframe of training data in shape n*m.
For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other
columns in the dataframe are assumed to be exogenous
variables (categorical or numeric).
y: A series of labels in shape n*1.
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
If a dict, it contains:
- "version": a str of the version number.
- "preprocessing": a dictionary containing:
* "center": a list of meta feature value offsets for normalization.
* "scale": a list of meta feature scales to normalize each dimension.
- "neighbors": a list of dictionaries. Each dictionary contains:
* "features": a list of the normalized meta features for a neighbor.
* "choice": an integer of the configuration id in the portfolio.
- "portfolio": a list of dictionaries, each corresponding to a configuration:
* "class": a str of the learner name.
* "hyperparameters": a dict of the config. The key "FLAML_sample_size" will be ignored.
location: (Optional) A str of the location containing mined portfolio file.
Only valid when the portfolio is a str, by default the location is flaml/default.
Returns:
hyperparams: A dict of the hyperparameter configurations.
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
"""
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
0
]
estimator = config["class"]
model_class = get_estimator_class(task, estimator)
hyperparams = config["hyperparameters"]
model = model_class(task=task, **hyperparams)
estimator_class = model.estimator_class
hyperparams = hyperparams and model.params
return hyperparams, estimator_class
def preprocess_and_suggest_hyperparams(
task,
X,
y,
estimator_or_predictor,
location=None,
):
"""Preprocess the data and suggest hyperparameters.
Example:
```python
hyperparams, estimator_class, X, y, feature_transformer, label_transformer = \
preprocess_and_suggest_hyperparams("classification", X_train, y_train, "xgb_limitdepth")
model = estimator_class(**hyperparams) # estimator_class is XGBClassifier
model.fit(X, y)
X_test = feature_transformer.transform(X_test)
y_pred = label_transformer.inverse_transform(pd.Series(model.predict(X_test).astype(int)))
```
Args:
task: A string of the task type, e.g.,
'classification', 'regression', 'ts_forecast', 'rank',
'seq-classification', 'seq-regression'.
X: A dataframe of training data in shape n*m.
For 'ts_forecast' task, the first column of X_train
must be the timestamp column (datetime type). Other
columns in the dataframe are assumed to be exogenous
variables (categorical or numeric).
y: A series of labels in shape n*1.
estimator_or_predictor: A str of the learner name or a dict of the learned config predictor.
"choose_xgb" means choosing between xgb_limitdepth and xgboost.
If a dict, it contains:
- "version": a str of the version number.
- "preprocessing": a dictionary containing:
* "center": a list of meta feature value offsets for normalization.
* "scale": a list of meta feature scales to normalize each dimension.
- "neighbors": a list of dictionaries. Each dictionary contains:
* "features": a list of the normalized meta features for a neighbor.
* "choice": a integer of the configuration id in the portfolio.
- "portfolio": a list of dictionaries, each corresponding to a configuration:
* "class": a str of the learner name.
* "hyperparameters": a dict of the config. They key "FLAML_sample_size" will be ignored.
location: (Optional) A str of the location containing mined portfolio file.
Only valid when the portfolio is a str, by default the location is flaml/default.
Returns:
hyperparams: A dict of the hyperparameter configurations.
estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier.
X: the preprocessed X.
y: the preprocessed y.
feature_transformer: a data transformer that can be applied to X_test.
label_transformer: a label transformer that can be applied to y_test.
"""
dt = DataTransformer()
X, y = dt.fit_transform(X, y, task)
if "choose_xgb" == estimator_or_predictor:
# choose between xgb_limitdepth and xgboost
estimator_or_predictor = suggest_learner(
task,
X,
y,
estimator_list=["xgb_limitdepth", "xgboost"],
location=location,
)
config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[
0
]
estimator = config["class"]
model_class = get_estimator_class(task, estimator)
hyperparams = config["hyperparameters"]
model = model_class(task=task, **hyperparams)
estimator_class = model.estimator_class
X = model._preprocess(X)
hyperparams = hyperparams and model.params
class AutoMLTransformer:
def transform(self, X):
return model._preprocess(dt.transform(X))
transformer = AutoMLTransformer()
return hyperparams, estimator_class, X, y, transformer, dt.label_transformer