autogen/test/nni/mnist.py

220 lines
6.3 KiB
Python
Raw Normal View History

# This file is copied from NNI project
# https://github.com/microsoft/nni/blob/master/examples/trials/mnist-tfv1/mnist.py
"""
A deep MNIST classifier using convolutional layers.
This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""
import os
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from nni.utils import merge_parameter
from torchvision import datasets, transforms
logger = logging.getLogger("mnist_AutoML")
class Net(nn.Module):
def __init__(self, hidden_size):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, hidden_size)
self.fc2 = nn.Linear(hidden_size, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if (args["batch_num"] is not None) and batch_idx >= args["batch_num"]:
break
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args["log_interval"] == 0:
logger.info(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction="sum").item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100.0 * correct / len(test_loader.dataset)
logger.info(
"\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
test_loss, correct, len(test_loader.dataset), accuracy
)
)
return accuracy
def main(args):
use_cuda = not args["no_cuda"] and torch.cuda.is_available()
torch.manual_seed(args["seed"])
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
data_dir = args["data_dir"]
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
data_dir,
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=args["batch_size"],
shuffle=True,
**kwargs
)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(
data_dir,
train=False,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=1000,
shuffle=True,
**kwargs
)
hidden_size = args["hidden_size"]
model = Net(hidden_size=hidden_size).to(device)
optimizer = optim.SGD(model.parameters(), lr=args["lr"], momentum=args["momentum"])
for epoch in range(1, args["epochs"] + 1):
train(args, model, device, train_loader, optimizer, epoch)
test_acc = test(args, model, device, test_loader)
# report intermediate result
nni.report_intermediate_result(test_acc)
logger.debug("test accuracy %g", test_acc)
logger.debug("Pipe send intermediate result done.")
# report final result
nni.report_final_result(test_acc)
logger.debug("Final result is %g", test_acc)
logger.debug("Send final result done.")
def get_params():
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument("--data_dir", type=str, default="./data", help="data directory")
parser.add_argument(
"--batch_size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument("--batch_num", type=int, default=None)
parser.add_argument(
"--hidden_size",
type=int,
default=512,
metavar="N",
help="hidden layer size (default: 512)",
)
parser.add_argument(
"--lr",
type=float,
default=0.01,
metavar="LR",
help="learning rate (default: 0.01)",
)
parser.add_argument(
"--momentum",
type=float,
default=0.5,
metavar="M",
help="SGD momentum (default: 0.5)",
)
parser.add_argument(
"--epochs",
type=int,
default=10,
metavar="N",
help="number of epochs to train (default: 10)",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--no_cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--log_interval",
type=int,
default=1000,
metavar="N",
help="how many batches to wait before logging training status",
)
args, _ = parser.parse_known_args()
return args
if __name__ == "__main__":
try:
# get parameters form tuner
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(get_params(), tuner_params))
print(params)
main(params)
except Exception as exception:
logger.exception(exception)
raise