2021-02-05 21:41:14 -08:00
|
|
|
'''!
|
|
|
|
* Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved.
|
2021-04-08 09:29:55 -07:00
|
|
|
* Licensed under the MIT License.
|
2021-02-05 21:41:14 -08:00
|
|
|
'''
|
2021-04-08 09:29:55 -07:00
|
|
|
|
2021-02-05 21:41:14 -08:00
|
|
|
import time
|
2021-07-10 09:02:17 -07:00
|
|
|
from joblib.externals.cloudpickle.cloudpickle import instance
|
2021-04-08 09:29:55 -07:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
2021-02-05 21:41:14 -08:00
|
|
|
from sklearn.metrics import mean_squared_error, r2_score, roc_auc_score, \
|
|
|
|
accuracy_score, mean_absolute_error, log_loss, average_precision_score, \
|
2021-04-08 09:29:55 -07:00
|
|
|
f1_score
|
2021-06-15 18:52:57 -07:00
|
|
|
from sklearn.model_selection import RepeatedStratifiedKFold, GroupKFold
|
2021-04-08 09:29:55 -07:00
|
|
|
from .model import (
|
|
|
|
XGBoostEstimator, XGBoostSklearnEstimator, RandomForestEstimator,
|
|
|
|
LGBMEstimator, LRL1Classifier, LRL2Classifier, CatBoostEstimator,
|
|
|
|
ExtraTreeEstimator, KNeighborsEstimator)
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def get_estimator_class(task, estimator_name):
|
|
|
|
''' when adding a new learner, need to add an elif branch '''
|
|
|
|
|
|
|
|
if 'xgboost' in estimator_name:
|
|
|
|
if 'regression' in task:
|
|
|
|
estimator_class = XGBoostEstimator
|
|
|
|
else:
|
|
|
|
estimator_class = XGBoostSklearnEstimator
|
|
|
|
elif 'rf' in estimator_name:
|
|
|
|
estimator_class = RandomForestEstimator
|
|
|
|
elif 'lgbm' in estimator_name:
|
|
|
|
estimator_class = LGBMEstimator
|
|
|
|
elif 'lrl1' in estimator_name:
|
|
|
|
estimator_class = LRL1Classifier
|
|
|
|
elif 'lrl2' in estimator_name:
|
2021-04-08 09:29:55 -07:00
|
|
|
estimator_class = LRL2Classifier
|
2021-02-05 21:41:14 -08:00
|
|
|
elif 'catboost' in estimator_name:
|
|
|
|
estimator_class = CatBoostEstimator
|
|
|
|
elif 'extra_tree' in estimator_name:
|
|
|
|
estimator_class = ExtraTreeEstimator
|
|
|
|
elif 'kneighbor' in estimator_name:
|
|
|
|
estimator_class = KNeighborsEstimator
|
|
|
|
else:
|
2021-04-08 09:29:55 -07:00
|
|
|
raise ValueError(
|
|
|
|
estimator_name + ' is not a built-in learner. '
|
2021-02-05 21:41:14 -08:00
|
|
|
'Please use AutoML.add_learner() to add a customized learner.')
|
|
|
|
return estimator_class
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
|
|
|
|
def sklearn_metric_loss_score(
|
|
|
|
metric_name, y_predict, y_true, labels=None, sample_weight=None
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
'''Loss using the specified metric
|
|
|
|
|
|
|
|
Args:
|
2021-04-26 20:50:41 +02:00
|
|
|
metric_name: A string of the metric name, one of
|
2021-04-08 09:29:55 -07:00
|
|
|
'r2', 'rmse', 'mae', 'mse', 'accuracy', 'roc_auc', 'log_loss',
|
2021-04-26 20:50:41 +02:00
|
|
|
'f1', 'ap', 'micro_f1', 'macro_f1'
|
2021-02-05 21:41:14 -08:00
|
|
|
y_predict: A 1d or 2d numpy array of the predictions which can be
|
|
|
|
used to calculate the metric. E.g., 2d for log_loss and 1d
|
2021-04-08 09:29:55 -07:00
|
|
|
for others.
|
2021-02-05 21:41:14 -08:00
|
|
|
y_true: A 1d numpy array of the true labels
|
|
|
|
labels: A 1d numpy array of the unique labels
|
|
|
|
sample_weight: A 1d numpy array of the sample weight
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
score: A float number of the loss, the lower the better
|
|
|
|
'''
|
|
|
|
metric_name = metric_name.lower()
|
|
|
|
if 'r2' in metric_name:
|
|
|
|
score = 1.0 - r2_score(y_true, y_predict, sample_weight=sample_weight)
|
|
|
|
elif metric_name == 'rmse':
|
2021-04-08 09:29:55 -07:00
|
|
|
score = np.sqrt(mean_squared_error(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight))
|
2021-02-05 21:41:14 -08:00
|
|
|
elif metric_name == 'mae':
|
2021-04-08 09:29:55 -07:00
|
|
|
score = mean_absolute_error(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight)
|
2021-02-05 21:41:14 -08:00
|
|
|
elif metric_name == 'mse':
|
2021-04-08 09:29:55 -07:00
|
|
|
score = mean_squared_error(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight)
|
2021-02-05 21:41:14 -08:00
|
|
|
elif metric_name == 'accuracy':
|
2021-04-08 09:29:55 -07:00
|
|
|
score = 1.0 - accuracy_score(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight)
|
2021-02-05 21:41:14 -08:00
|
|
|
elif 'roc_auc' in metric_name:
|
2021-04-08 09:29:55 -07:00
|
|
|
score = 1.0 - roc_auc_score(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight)
|
2021-02-05 21:41:14 -08:00
|
|
|
elif 'log_loss' in metric_name:
|
2021-04-08 09:29:55 -07:00
|
|
|
score = log_loss(
|
|
|
|
y_true, y_predict, labels=labels, sample_weight=sample_weight)
|
2021-04-26 20:50:41 +02:00
|
|
|
elif 'micro_f1' in metric_name:
|
2021-05-07 04:29:38 +00:00
|
|
|
score = 1 - f1_score(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight, average='micro')
|
2021-04-26 20:50:41 +02:00
|
|
|
elif 'macro_f1' in metric_name:
|
2021-05-07 04:29:38 +00:00
|
|
|
score = 1 - f1_score(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight, average='macro')
|
2021-02-05 21:41:14 -08:00
|
|
|
elif 'f1' in metric_name:
|
|
|
|
score = 1 - f1_score(y_true, y_predict, sample_weight=sample_weight)
|
|
|
|
elif 'ap' in metric_name:
|
2021-04-08 09:29:55 -07:00
|
|
|
score = 1 - average_precision_score(
|
|
|
|
y_true, y_predict, sample_weight=sample_weight)
|
2021-02-05 21:41:14 -08:00
|
|
|
else:
|
2021-04-08 09:29:55 -07:00
|
|
|
raise ValueError(
|
|
|
|
metric_name + ' is not a built-in metric, '
|
|
|
|
'currently built-in metrics are: '
|
2021-05-25 17:30:08 +02:00
|
|
|
'r2, rmse, mae, mse, accuracy, roc_auc, log_loss, f1, micro_f1, macro_f1, ap. '
|
2021-04-08 09:29:55 -07:00
|
|
|
'please pass a customized metric function to AutoML.fit(metric=func)')
|
2021-02-05 21:41:14 -08:00
|
|
|
return score
|
|
|
|
|
|
|
|
|
|
|
|
def get_y_pred(estimator, X, eval_metric, obj):
|
|
|
|
if eval_metric in ['roc_auc', 'ap'] and 'binary' in obj:
|
2021-04-08 09:29:55 -07:00
|
|
|
y_pred_classes = estimator.predict_proba(X)
|
|
|
|
y_pred = y_pred_classes[
|
|
|
|
:, 1] if y_pred_classes.ndim > 1 else y_pred_classes
|
2021-02-05 21:41:14 -08:00
|
|
|
elif eval_metric in ['log_loss', 'roc_auc']:
|
|
|
|
y_pred = estimator.predict_proba(X)
|
|
|
|
else:
|
2021-04-08 09:29:55 -07:00
|
|
|
y_pred = estimator.predict(X)
|
2021-02-05 21:41:14 -08:00
|
|
|
return y_pred
|
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def get_test_loss(
|
|
|
|
estimator, X_train, y_train, X_test, y_test, weight_test,
|
|
|
|
eval_metric, obj, labels=None, budget=None, train_loss=False, fit_kwargs={}
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
start = time.time()
|
|
|
|
train_time = estimator.fit(X_train, y_train, budget, **fit_kwargs)
|
|
|
|
if isinstance(eval_metric, str):
|
2021-07-10 09:02:17 -07:00
|
|
|
pred_start = time.time()
|
2021-02-05 21:41:14 -08:00
|
|
|
test_pred_y = get_y_pred(estimator, X_test, eval_metric, obj)
|
2021-07-10 09:02:17 -07:00
|
|
|
pred_time = (time.time() - pred_start) / X_test.shape[0]
|
2021-02-05 21:41:14 -08:00
|
|
|
test_loss = sklearn_metric_loss_score(eval_metric, test_pred_y, y_test,
|
2021-04-08 09:29:55 -07:00
|
|
|
labels, weight_test)
|
|
|
|
if train_loss is not False:
|
2021-02-05 21:41:14 -08:00
|
|
|
test_pred_y = get_y_pred(estimator, X_train, eval_metric, obj)
|
2021-04-08 09:29:55 -07:00
|
|
|
train_loss = sklearn_metric_loss_score(
|
|
|
|
eval_metric, test_pred_y,
|
|
|
|
y_train, labels, fit_kwargs.get('sample_weight'))
|
|
|
|
else: # customized metric function
|
2021-07-10 09:02:17 -07:00
|
|
|
test_loss, metrics = eval_metric(
|
2021-02-05 21:41:14 -08:00
|
|
|
X_test, y_test, estimator, labels, X_train, y_train,
|
|
|
|
weight_test, fit_kwargs.get('sample_weight'))
|
2021-07-10 09:02:17 -07:00
|
|
|
if isinstance(metrics, dict):
|
|
|
|
pred_time = metrics.get('pred_time', 0)
|
|
|
|
train_loss = metrics
|
2021-04-08 09:29:55 -07:00
|
|
|
train_time = time.time() - start
|
2021-07-10 09:02:17 -07:00
|
|
|
return test_loss, train_time, train_loss, pred_time
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
|
|
|
|
def train_model(estimator, X_train, y_train, budget, fit_kwargs={}):
|
|
|
|
train_time = estimator.fit(X_train, y_train, budget, **fit_kwargs)
|
|
|
|
return train_time
|
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def evaluate_model(
|
|
|
|
estimator, X_train, y_train, X_val, y_val, weight_val,
|
|
|
|
budget, kf, task, eval_method, eval_metric, best_val_loss, train_loss=False,
|
|
|
|
fit_kwargs={}
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
if 'holdout' in eval_method:
|
2021-07-10 09:02:17 -07:00
|
|
|
val_loss, train_loss, train_time, pred_time = evaluate_model_holdout(
|
2021-02-05 21:41:14 -08:00
|
|
|
estimator, X_train, y_train, X_val, y_val, weight_val, budget,
|
2021-07-10 09:02:17 -07:00
|
|
|
task, eval_metric, train_loss=train_loss,
|
2021-02-05 21:41:14 -08:00
|
|
|
fit_kwargs=fit_kwargs)
|
|
|
|
else:
|
2021-07-10 09:02:17 -07:00
|
|
|
val_loss, train_loss, train_time, pred_time = evaluate_model_CV(
|
2021-04-08 09:29:55 -07:00
|
|
|
estimator, X_train, y_train, budget, kf, task,
|
2021-02-05 21:41:14 -08:00
|
|
|
eval_metric, best_val_loss, train_loss=train_loss,
|
|
|
|
fit_kwargs=fit_kwargs)
|
2021-07-10 09:02:17 -07:00
|
|
|
return val_loss, train_loss, train_time, pred_time
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def evaluate_model_holdout(
|
|
|
|
estimator, X_train, y_train, X_val, y_val,
|
2021-07-10 09:02:17 -07:00
|
|
|
weight_val, budget, task, eval_metric, train_loss=False,
|
2021-04-08 09:29:55 -07:00
|
|
|
fit_kwargs={}
|
|
|
|
):
|
2021-07-10 09:02:17 -07:00
|
|
|
val_loss, train_time, train_loss, pred_time = get_test_loss(
|
2021-02-05 21:41:14 -08:00
|
|
|
estimator, X_train, y_train, X_val, y_val, weight_val, eval_metric,
|
2021-04-08 09:29:55 -07:00
|
|
|
task, budget=budget, train_loss=train_loss, fit_kwargs=fit_kwargs)
|
2021-07-10 09:02:17 -07:00
|
|
|
return val_loss, train_loss, train_time, pred_time
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def evaluate_model_CV(
|
|
|
|
estimator, X_train_all, y_train_all, budget, kf,
|
|
|
|
task, eval_metric, best_val_loss, train_loss=False, fit_kwargs={}
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
start_time = time.time()
|
2021-07-10 09:02:17 -07:00
|
|
|
total_val_loss = 0
|
|
|
|
total_train_loss = None
|
|
|
|
train_time = pred_time = 0
|
|
|
|
valid_fold_num = total_fold_num = 0
|
2021-02-05 21:41:14 -08:00
|
|
|
n = kf.get_n_splits()
|
|
|
|
X_train_split, y_train_split = X_train_all, y_train_all
|
2021-04-08 09:29:55 -07:00
|
|
|
if task == 'regression':
|
2021-02-05 21:41:14 -08:00
|
|
|
labels = None
|
|
|
|
else:
|
2021-04-08 09:29:55 -07:00
|
|
|
labels = np.unique(y_train_all)
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
if isinstance(kf, RepeatedStratifiedKFold):
|
|
|
|
kf = kf.split(X_train_split, y_train_split)
|
2021-06-15 18:52:57 -07:00
|
|
|
elif isinstance(kf, GroupKFold):
|
|
|
|
kf = kf.split(X_train_split, y_train_split, kf.groups)
|
2021-02-05 21:41:14 -08:00
|
|
|
else:
|
|
|
|
kf = kf.split(X_train_split)
|
|
|
|
rng = np.random.RandomState(2020)
|
|
|
|
val_loss_list = []
|
2021-04-08 09:29:55 -07:00
|
|
|
budget_per_train = budget / (n + 1)
|
2021-02-05 21:41:14 -08:00
|
|
|
if 'sample_weight' in fit_kwargs:
|
|
|
|
weight = fit_kwargs['sample_weight']
|
|
|
|
weight_val = None
|
|
|
|
else:
|
|
|
|
weight = weight_val = None
|
|
|
|
for train_index, val_index in kf:
|
|
|
|
train_index = rng.permutation(train_index)
|
|
|
|
if isinstance(X_train_all, pd.DataFrame):
|
|
|
|
X_train, X_val = X_train_split.iloc[
|
|
|
|
train_index], X_train_split.iloc[val_index]
|
|
|
|
else:
|
|
|
|
X_train, X_val = X_train_split[
|
|
|
|
train_index], X_train_split[val_index]
|
|
|
|
if isinstance(y_train_all, pd.Series):
|
|
|
|
y_train, y_val = y_train_split.iloc[
|
|
|
|
train_index], y_train_split.iloc[val_index]
|
|
|
|
else:
|
|
|
|
y_train, y_val = y_train_split[
|
|
|
|
train_index], y_train_split[val_index]
|
|
|
|
estimator.cleanup()
|
|
|
|
if weight is not None:
|
|
|
|
fit_kwargs['sample_weight'], weight_val = weight[
|
|
|
|
train_index], weight[val_index]
|
2021-07-10 09:02:17 -07:00
|
|
|
val_loss_i, train_time_i, train_loss_i, pred_time_i = get_test_loss(
|
2021-02-05 21:41:14 -08:00
|
|
|
estimator, X_train, y_train, X_val, y_val, weight_val,
|
2021-04-08 09:29:55 -07:00
|
|
|
eval_metric, task, labels, budget_per_train,
|
2021-02-05 21:41:14 -08:00
|
|
|
train_loss=train_loss, fit_kwargs=fit_kwargs)
|
|
|
|
if weight is not None:
|
|
|
|
fit_kwargs['sample_weight'] = weight
|
|
|
|
valid_fold_num += 1
|
2021-07-10 09:02:17 -07:00
|
|
|
total_fold_num += 1
|
2021-02-05 21:41:14 -08:00
|
|
|
total_val_loss += val_loss_i
|
2021-04-08 09:29:55 -07:00
|
|
|
if train_loss is not False:
|
2021-06-18 21:19:59 -07:00
|
|
|
if isinstance(total_train_loss, list):
|
|
|
|
total_train_loss = [
|
|
|
|
total_train_loss[i] + v for i, v in enumerate(train_loss_i)]
|
2021-07-10 09:02:17 -07:00
|
|
|
elif isinstance(total_train_loss, dict):
|
|
|
|
total_train_loss = {
|
|
|
|
k: total_train_loss[k] + v for k, v in train_loss_i.items()}
|
|
|
|
elif total_train_loss is not None:
|
2021-04-08 09:29:55 -07:00
|
|
|
total_train_loss += train_loss_i
|
|
|
|
else:
|
|
|
|
total_train_loss = train_loss_i
|
2021-02-05 21:41:14 -08:00
|
|
|
train_time += train_time_i
|
2021-07-10 09:02:17 -07:00
|
|
|
pred_time += pred_time_i
|
2021-02-05 21:41:14 -08:00
|
|
|
if valid_fold_num == n:
|
2021-04-08 09:29:55 -07:00
|
|
|
val_loss_list.append(total_val_loss / valid_fold_num)
|
2021-02-05 21:41:14 -08:00
|
|
|
total_val_loss = valid_fold_num = 0
|
|
|
|
elif time.time() - start_time >= budget:
|
2021-04-08 09:29:55 -07:00
|
|
|
val_loss_list.append(total_val_loss / valid_fold_num)
|
2021-02-05 21:41:14 -08:00
|
|
|
break
|
|
|
|
val_loss = np.max(val_loss_list)
|
2021-07-10 09:02:17 -07:00
|
|
|
n = total_fold_num
|
2021-04-08 09:29:55 -07:00
|
|
|
if train_loss is not False:
|
2021-06-18 21:19:59 -07:00
|
|
|
if isinstance(total_train_loss, list):
|
|
|
|
train_loss = [v / n for v in total_train_loss]
|
2021-07-10 09:02:17 -07:00
|
|
|
elif isinstance(total_train_loss, dict):
|
|
|
|
train_loss = {k: v / n for k, v in total_train_loss.items()}
|
2021-06-18 21:19:59 -07:00
|
|
|
else:
|
|
|
|
train_loss = total_train_loss / n
|
2021-07-10 09:02:17 -07:00
|
|
|
pred_time /= n
|
2021-02-05 21:41:14 -08:00
|
|
|
budget -= time.time() - start_time
|
|
|
|
if val_loss < best_val_loss and budget > budget_per_train:
|
|
|
|
estimator.cleanup()
|
|
|
|
estimator.fit(X_train_all, y_train_all, budget, **fit_kwargs)
|
2021-07-10 09:02:17 -07:00
|
|
|
return val_loss, train_loss, train_time, pred_time
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def compute_estimator(
|
|
|
|
X_train, y_train, X_val, y_val, weight_val, budget, kf,
|
|
|
|
config_dic, task, estimator_name, eval_method, eval_metric,
|
|
|
|
best_val_loss=np.Inf, n_jobs=1, estimator_class=None, train_loss=False,
|
|
|
|
fit_kwargs={}
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
estimator_class = estimator_class or get_estimator_class(
|
|
|
|
task, estimator_name)
|
|
|
|
estimator = estimator_class(
|
2021-04-08 09:29:55 -07:00
|
|
|
**config_dic, task=task, n_jobs=n_jobs)
|
2021-07-10 09:02:17 -07:00
|
|
|
val_loss, train_loss, train_time, pred_time = evaluate_model(
|
2021-02-05 21:41:14 -08:00
|
|
|
estimator, X_train, y_train, X_val, y_val, weight_val, budget, kf, task,
|
|
|
|
eval_method, eval_metric, best_val_loss, train_loss=train_loss,
|
|
|
|
fit_kwargs=fit_kwargs)
|
2021-07-10 09:02:17 -07:00
|
|
|
return estimator, val_loss, train_loss, train_time, pred_time
|
2021-02-05 21:41:14 -08:00
|
|
|
|
|
|
|
|
2021-04-08 09:29:55 -07:00
|
|
|
def train_estimator(
|
|
|
|
X_train, y_train, config_dic, task,
|
|
|
|
estimator_name, n_jobs=1, estimator_class=None, budget=None, fit_kwargs={}
|
|
|
|
):
|
2021-02-05 21:41:14 -08:00
|
|
|
start_time = time.time()
|
2021-04-08 09:29:55 -07:00
|
|
|
estimator_class = estimator_class or get_estimator_class(
|
|
|
|
task, estimator_name)
|
|
|
|
estimator = estimator_class(**config_dic, task=task, n_jobs=n_jobs)
|
2021-02-05 21:41:14 -08:00
|
|
|
if X_train is not None:
|
2021-04-08 09:29:55 -07:00
|
|
|
train_time = train_model(
|
|
|
|
estimator, X_train, y_train, budget, fit_kwargs)
|
2021-02-05 21:41:14 -08:00
|
|
|
else:
|
|
|
|
estimator = estimator.estimator_class(**estimator.params)
|
|
|
|
train_time = time.time() - start_time
|
|
|
|
return estimator, train_time
|
|
|
|
|
|
|
|
|
|
|
|
def get_classification_objective(num_labels: int) -> str:
|
|
|
|
if num_labels == 2:
|
|
|
|
objective_name = 'binary:logistic'
|
|
|
|
else:
|
|
|
|
objective_name = 'multi:softmax'
|
|
|
|
return objective_name
|
2021-06-04 10:31:33 -07:00
|
|
|
|
|
|
|
|
|
|
|
def norm_confusion_matrix(y_true, y_pred):
|
|
|
|
'''normalized confusion matrix
|
|
|
|
|
|
|
|
Args:
|
|
|
|
estimator: A multi-class classification estimator
|
|
|
|
y_true: A numpy array or a pandas series of true labels
|
|
|
|
y_pred: A numpy array or a pandas series of predicted labels
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A normalized confusion matrix
|
|
|
|
'''
|
|
|
|
from sklearn.metrics import confusion_matrix
|
|
|
|
conf_mat = confusion_matrix(y_true, y_pred)
|
|
|
|
norm_conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]
|
|
|
|
return norm_conf_mat
|
|
|
|
|
|
|
|
|
|
|
|
def multi_class_curves(y_true, y_pred_proba, curve_func):
|
|
|
|
'''Binarize the data for multi-class tasks and produce ROC or precision-recall curves
|
|
|
|
|
|
|
|
Args:
|
|
|
|
y_true: A numpy array or a pandas series of true labels
|
|
|
|
y_pred_proba: A numpy array or a pandas dataframe of predicted probabilites
|
|
|
|
curve_func: A function to produce a curve (e.g., roc_curve or precision_recall_curve)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A tuple of two dictionaries with the same set of keys (class indices)
|
|
|
|
The first dictionary curve_x stores the x coordinates of each curve, e.g.,
|
|
|
|
curve_x[0] is an 1D array of the x coordinates of class 0
|
|
|
|
The second dictionary curve_y stores the y coordinates of each curve, e.g.,
|
|
|
|
curve_y[0] is an 1D array of the y coordinates of class 0
|
|
|
|
'''
|
|
|
|
from sklearn.preprocessing import label_binarize
|
|
|
|
classes = np.unique(y_true)
|
|
|
|
y_true_binary = label_binarize(y_true, classes=classes)
|
|
|
|
|
|
|
|
curve_x, curve_y = {}, {}
|
|
|
|
for i in range(len(classes)):
|
|
|
|
curve_x[i], curve_y[i], _ = curve_func(y_true_binary[:, i], y_pred_proba[:, i])
|
|
|
|
return curve_x, curve_y
|