2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Licensed under the MIT License.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Run FLAML in AzureML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 1. Introduction\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "to use and extend, such as adding new learners. FLAML can \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- serve as an economical AutoML engine,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be used as a fast hyperparameter tuning tool, or \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "   tuning tasks.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library together with AzureML.\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` and `azureml` option:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```bash\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pip install flaml[notebook,azureml]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-17 14:03:19 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": null,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "!pip install flaml[notebook,azureml]"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Enable mlflow in AzureML workspace"
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-17 14:03:19 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import mlflow\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from azureml.core import Workspace\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "ws = Workspace.from_config()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "## 2. Classification Example\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "### Load data and preprocess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "load dataset from ./openml_ds1169.pkl\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      "Dataset name: airlines\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_train.shape: (404537, 7), y_train.shape: (404537,);\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_test.shape: (134846, 7), y_test.shape: (134846,)\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import load_openml_dataset\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir='./')"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Run FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' import AutoML class from flaml package '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml import AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"time_budget\": 60,  # total running time in seconds\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc','f1','log_loss','mae','mse','r2']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"estimator_list\": ['lgbm', 'rf', 'xgboost'],  # list of ML learners\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'classification',  # task type    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"sample\": False,  # whether to subsample training data\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "}"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "mlflow.set_experiment(\"flaml\")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "with mlflow.start_run() as run:\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    '''The main flaml automl API'''\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    automl.fit(X_train=X_train, y_train=y_train, **settings)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Best model and metric"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Best ML leaner: lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best hyperparmeter config: {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best accuracy on validation data: 0.6229\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Training duration of best run: 1.288 s\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' retrieve best config and best learner'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best ML leaner:', automl.best_estimator)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "LGBMClassifier(max_bin=255, n_estimators=4, num_leaves=4, objective='binary',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "               reg_alpha=0.0009765625, reg_lambda=1.0)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.model"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 8,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "''' pickle and save the automl object '''\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "import pickle\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "with open('automl.pkl', 'wb') as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 9,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Predicted labels [1 0 1 ... 0 0 0]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "True labels [0 0 0 ... 0 1 0]\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute predictions of testing dataset ''' \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = automl.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('True labels', y_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred_proba = automl.predict_proba(X_test)[:,1]"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "accuracy = 0.6262773830888569\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "roc_auc = 0.6402112531029138\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "log_loss = 0.6637970847245668\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "f1 = 0.35105656927257045\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute different metric values on testing dataset'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Log history"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 11,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 364083, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}}\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import get_output_from_log\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "time_history, best_valid_loss_history, valid_loss_history, config_history, train_loss_history = \\\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    get_output_from_log(filename = settings['log_file_name'], time_budget = 60)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "for config in config_history:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    print(config)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 12,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3de5xdVX338c+XcJc7CZSbXGqCSrUgI17wArZApCKoiGBtEVuotVitladQa8uDD31hrfbRmmoDpQiVIlCI0YqBys0CgUzkmtCEEFAmIAmQKCICCd/+sdeBzWHP5CTMmTOX7/v1Oq85e+219vmdPTPnd/bae68l20RERLTboNcBRETE6JQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSJiPUh6q6RFvY4jopuSIGLMkXS/pN/uZQy2f2h7725tX9Jhkq6X9LikFZKuk/Tubr1eRJMkiIgGkib18LWPBi4Bzgd2BXYE/ho4Yj22JUn5P4/1kj+cGDckbSDpVEn3SnpU0sWStqutv0TSTyX9rHw736e27jxJX5P0PUlPAAeXI5VPS7qjtPmWpE1L/YMkDdTaD1q3rP8/kh6S9KCkP5RkSa9oeA8CvgR8zvY5tn9m+1nb19k+sdQ5XdK/1drsUba3YVm+VtKZkm4AfgmcIqm/7XX+TNLs8nwTSX8v6SeSHpb0dUmbvcRfR4wDSRAxnnwcOAp4O7AzsBKYUVt/BTAV2AH4EfDNtvYfBM4EtgT+u5QdA0wH9gReC3x4iNdvrCtpOvAp4LeBVwAHDbGNvYHdgEuHqNOJ3wNOonovXwf2ljS1tv6DwIXl+VnANGDfEt8uVEcsMcElQcR48lHgM7YHbD8FnA4c3fpmbftc24/X1v2mpK1r7b9t+4byjf1Xpewrth+0/RjwHaoP0cEMVvcY4F9tL7D9y/Lag9m+/Hyo0zc9iPPK6622/TPg28BxACVRvBKYXY5YTgL+zPZjth8H/hY49iW+fowDSRAxnuwOXC5plaRVwN3AGmBHSZMknVW6n34O3F/aTK61f6Bhmz+tPf8lsMUQrz9Y3Z3btt30Oi2Plp87DVGnE+2vcSElQVAdPcwqyWoKsDkwv7bfvl/KY4JLgojx5AHgnba3qT02tb2M6kPxSKpunq2BPUob1dp3a2jjh6hONrfsNkTdRVTv431D1HmC6kO95dca6rS/l6uAKZL2pUoUre6lR4AngX1q+2xr20MlwpggkiBirNpI0qa1x4ZUfe1nStodQNIUSUeW+lsCT1F9Q9+cqhtlpFwMnCDpVZI2Bz47WEVX4+9/CvispBMkbVVOvr9F0sxS7TbgbZJeXrrITltbALafoboy6gvAdlQJA9vPAmcD/yBpBwBJu0g6bL3fbYwbSRAxVn2P6ptv63E68GVgNnClpMeBucAbSv3zgR8Dy4CFZd2IsH0F8BXgGmBJ7bWfGqT+pcAHgI8ADwIPA/+P6jwCtq8CvgXcAcwHvtthKBdSHUFdYnt1rfwvWnGV7rf/ojpZHhOcMmFQxMiS9CrgLmCTtg/qiFElRxARI0DSe8r9BtsCnwe+k+QQo10SRMTI+CNgOXAv1ZVVf9zbcCLWLl1MERHRKEcQERHRaMNeBzBcJk+e7D322KPXYUREjCnz589/xHbjjZHjJkHsscce9Pf3r71iREQ8R9KPB1uXLqaIiGiUBBEREY2SICIiolESRERENEqCiIiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBEREY2SICIiolESRERENEqCiIiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBEREY26miAkTZe0SNISSacOUucYSQslLZB0Ya18jaTbymN2N+OMiIgX69qc1JImATOAQ4ABYJ6k2bYX1upMBU4DDrS9UtIOtU08aXvfbsUXERFD6+YRxAHAEttLbT8NXAQc2VbnRGCG7ZUAtpd3MZ6IiFgH3UwQuwAP1JYHSlndNGCapBskzZU0vbZuU0n9pfyopheQdFKp079ixYrhjT4iYoLrWhfTOrz+VOAgYFfgekmvsb0K2N32Mkl7AVdLutP2vfXGtmcCMwH6+vo8sqFHRIxv3TyCWAbsVlvetZTVDQCzbT9j+z5gMVXCwPay8nMpcC2wXxdjjYiINt1MEPOAqZL2lLQxcCzQfjXSLKqjByRNpupyWippW0mb1MoPBBYSEREjpmtdTLZXSzoZmANMAs61vUDSGUC/7dll3aGSFgJrgFNsPyrpzcA/S3qWKomdVb/6KSIiuk/2+Oi67+vrc39/f6/DiIgYUyTNt93XtC53UkdERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdGoqwlC0nRJiyQtkXTqIHWOkbRQ0gJJF7at20rSgKSvdjPOiIh4sQ27tWFJk4AZwCHAADBP0mzbC2t1pgKnAQfaXilph7bNfA64vlsxRkTE4Lp5BHEAsMT2UttPAxcBR7bVORGYYXslgO3lrRWS9gd2BK7sYowRETGIbiaIXYAHassDpaxuGjBN0g2S5kqaDiBpA+CLwKeHegFJJ0nql9S/YsWKYQw9IiJ6fZJ6Q2AqcBBwHHC2pG2AjwHfsz0wVGPbM2332e6bMmVK14ONiJhIunYOAlgG7FZb3rWU1Q0AN9t+BrhP0mKqhPEm4K2SPgZsAWws6Re2G090R0TE8OvmEcQ8YKqkPSVtDBwLzG6rM4vq6AFJk6m6nJba/l3bL7e9B1U30/lJDhERI6trCcL2auBkYA5wN3Cx7QWSzpD07lJtDvCopIXANcApth/tVkwREdE52e51DMOir6/P/f39vQ4jImJMkTTfdl/TurUeQUjafvhDioiI0a6TLqa5ki6RdLgkdT2iiIgYFTpJENOAmcDvAfdI+ltJ07obVkRE9NpaE4QrV9k+jurO5+OBWyRdJ+lNXY8wIiJ6Yq33QZRzEB+iOoJ4GPg41eWq+wKXAHt2M8CIiOiNTm6Uuwm4ADiq7c7mfklf705YERHRa50kiL09yLWwtj8/zPFERMQo0clJ6ivL+EgASNpW0pwuxhQREaNAJwliiu1VrYUyNHf7vA0RETHOdJIg1kh6eWtB0u7A+Lj9OiIiBtXJOYjPAP8t6TpAwFuBk7oaVURE9NxaE4Tt70t6HfDGUvRJ2490N6yIiOi1TueDWAMsBzYFXi0J25krOiJiHOvkRrk/BD5BNeHPbVRHEjcB7+huaBER0UudnKT+BPB64Me2Dwb2A1YN3SQiIsa6ThLEr2z/CkDSJrb/B9i7u2FFRESvdXIOYqDcKDcLuErSSuDH3Q0rIiJ6rZOrmN5Tnp4u6Rpga+D7XY0qIiJ6bsgEIWkSsMD2KwFsXzciUUVERM8NeQ7C9hpgUf1O6oiImBg6OQexLbBA0i3AE61C2+/uWlQREdFznSSIz3Y9ioiIGHU6OUm93ucdJE0HvgxMAs6xfVZDnWOA06kGALzd9gfLgICXU3WBbQT8o+1MThQRMYI6uZP6cZ4fvXVjqg/sJ2xvtZZ2k4AZwCHAADBP0mzbC2t1pgKnAQfaXimpNYz4Q8CbbD8laQvgrtL2wXV8fxERsZ46OYLYsvVckoAjeX7gvqEcACyxvbS0vai0XVircyIwo8wxge3l5efTtTqb0NkNfRERMYzW6YPXlVnAYR1U3wV4oLY8UMrqpgHTJN0gaW7pkgJA0m6S7ijb+HzT0YOkkyT1S+pfsWLFuryViIhYi066mN5bW9wA6AN+NYyvPxU4iGowwOslvcb2KtsPAK+VtDMwS9Klth+uN7Y9E5gJ0NfXl0mMIiKGUSdXMR1Re74auJ+qq2htlgG71ZZ3LWV1A8DNtp8B7pO0mCphzGtVsP2gpLuoJiq6tIPXjYiIYdDJOYgT1nPb84CpkvakSgzHAh9sqzMLOA74V0mTqbqclkr
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"277.314375pt\" version=\"1.1\" viewBox=\"0 0 392.14375 277.314375\" width=\"392.14375pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n  <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n  </style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 277.314375 \nL 392.14375 277.314375 \nL 392.14375 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 50.14375 239.758125 \nL 384.94375 239.758125 \nL 384.94375 22.318125 \nL 50.14375 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g id=\"PathCollection_1\">\n    <defs>\n     <path d=\"M 0 3 \nC 0.795609 3 1.55874 2.683901 2.12132 2.12132 \nC 2.683901 1.55874 3 0.795609 3 0 \nC 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \nC 1.55874 -2.683901 0.795609 -3 0 -3 \nC -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \nC -2.683901 -1.55874 -3 -0.795609 -3 0 \nC -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \nC -1.55874 2.683901 -0.795609 3 0 3 \nz\n\" id=\"m5ad51b6452\" style=\"stroke:#1f77b4;\"/>\n    </defs>\n    <g clip-path=\"url(#p373656e3eb)\">\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"217.54375\" xlink:href=\"#m5ad51b6452\" y=\"131.038125\"/>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m53c392168c\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.144175\" xlink:href=\"#m53c392168c\" y=\"239.758125\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 1.700 -->\n      <defs>\n       <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n       <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n       <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n      </defs>\n      <g transform=\"translate(49.830112 254.356562)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-55\"/>\n       <use x=\"159.033203\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"222.65625\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"106.647657\" xlink:href=\"#m53c392168c\" y=\"239.758125\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 1.725 -->\n      <defs>\n       <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<Figure size 432x288 with 1 Axes>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "needs_background": "light"
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "display_data"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import matplotlib.pyplot as plt\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import numpy as np\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.title('Learning Curve')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.xlabel('Wall Clock Time (s)')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.ylabel('Validation Accuracy')\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "plt.scatter(time_history, 1 - np.array(valid_loss_history))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.step(time_history, 1 - np.array(best_valid_loss_history), where='post')\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "plt.show()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "display_name": "Python 3.8.0 64-bit",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "interpreter": {
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
									
										
										
										
											2021-07-20 17:00:44 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.8.0-final"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-05 21:41:14 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 2
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								}