autogen/test/test_python_log.py

62 lines
2.1 KiB
Python
Raw Normal View History

from flaml import AutoML
from sklearn.datasets import load_boston
import os
import unittest
import logging
import tempfile
import io
class TestLogging(unittest.TestCase):
def test_logging_level(self):
from flaml import logger, logger_formatter
with tempfile.TemporaryDirectory() as d:
training_log = os.path.join(d, "training.log")
# Configure logging for the FLAML logger
# and add a handler that outputs to a buffer.
logger.setLevel(logging.INFO)
buf = io.StringIO()
ch = logging.StreamHandler(buf)
ch.setFormatter(logger_formatter)
logger.addHandler(ch)
# Run a simple job.
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": 'rmse',
"task": 'regression',
"log_file_name": training_log,
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
"learner_selector": "roundrobin",
}
X_train, y_train = load_boston(return_X_y=True)
n = len(y_train) >> 1
automl.fit(X_train=X_train[:n], y_train=y_train[:n],
X_val=X_train[n:], y_val=y_train[n:],
**automl_settings)
logger.info(automl.search_space)
logger.info(automl.low_cost_partial_config)
logger.info(automl.points_to_evalaute)
import optuna as ot
study = ot.create_study()
from flaml.tune.space import define_by_run_func
logger.info(define_by_run_func(study.ask(), automl.search_space))
config = automl.best_config.copy()
config['learner'] = automl.best_estimator
automl.trainable({"ml": config})
# Check if the log buffer is populated.
self.assertTrue(len(buf.getvalue()) > 0)
import pickle
with open('automl.pkl', 'wb') as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
print(automl.__version__)