autogen/setup.py

63 lines
1.7 KiB
Python
Raw Normal View History

2020-12-04 09:40:27 -08:00
import setuptools
import os
here = os.path.abspath(os.path.dirname(__file__))
with open("README.md", "r", encoding="UTF-8") as fh:
2020-12-04 09:40:27 -08:00
long_description = fh.read()
# Get the code version
version = {}
2023-09-16 10:57:57 +00:00
with open(os.path.join(here, "autogen/version.py")) as fp:
2020-12-04 09:40:27 -08:00
exec(fp.read(), version)
__version__ = version["__version__"]
install_requires = [
"openai==1.0.0b3",
2023-09-16 10:57:57 +00:00
"diskcache",
"termcolor",
2023-09-16 15:30:28 +00:00
"flaml",
"python-dotenv",
"tiktoken",
]
2020-12-04 09:40:27 -08:00
setuptools.setup(
2023-09-19 17:50:43 +00:00
name="pyautogen",
2020-12-04 09:40:27 -08:00
version=__version__,
2023-09-16 10:57:57 +00:00
author="AutoGen",
2023-09-16 16:41:15 +00:00
author_email="auto-gen@outlook.com",
2023-09-16 10:57:57 +00:00
description="Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework",
2020-12-04 09:40:27 -08:00
long_description=long_description,
long_description_content_type="text/markdown",
2023-09-16 10:57:57 +00:00
url="https://github.com/microsoft/autogen",
2023-09-19 18:26:50 +00:00
packages=setuptools.find_packages(include=["autogen*"], exclude=["test"]),
# package_data={
# "autogen.default": ["*/*.json"],
# },
# include_package_data=True,
2020-12-04 09:40:27 -08:00
install_requires=install_requires,
extras_require={
"test": [
"coverage>=5.3",
"ipykernel",
"nbconvert",
"nbformat",
"pre-commit",
"pytest-asyncio",
"pytest>=6.1.1",
],
2023-09-16 15:30:28 +00:00
"blendsearch": ["flaml[blendsearch]"],
2023-09-16 10:57:57 +00:00
"mathchat": ["sympy", "pydantic==1.10.9", "wolframalpha"],
"retrievechat": ["chromadb", "sentence_transformers", "pypdf", "ipython"],
TeachableAgent (#278) * Initial commit. * Disable LLM response caching. * Add teachability option to setup.py * Modify test to use OAI_CONFIG_LIST as suggested in the docs. * Expand unit test. * Complete unit test. * Add filter_dict * details * AnalysisAgent * details * More documentation and debug output. * Support retrieval of any number of relevant memos, including zero. * More robust analysis separator. * cleanup * teach_config * refactoring * For robustness, allow more flexibility on memo storage and retrieval. * de-dupe the retrieved memos. * Simplify AnalysisAgent. The unit tests now pass with gpt-3.5 * comments * Add a verbosity level to control analyzer messages. * refactoring * comments * Persist memory on disk. * cleanup * Use markdown to format retrieved memos. * Use markdown in TextAnalyzerAgent * Add another verbosity level. * clean up logging * notebook * minor edits * cleanup * linter fixes * Skip tests that fail to import openai * Address reviewer feedback. * lint * refactoring * Improve wording * Improve code coverage. * lint * Use llm_config to control caching. * lowercase notebook name * Sort out the parameters passed through to ConversableAgent, and supply full docstrings for the others. * lint * Allow TextAnalyzerAgent to be given a different llm_config than TeachableAgent. * documentation * Modifications to run openai workflow. * Test on just python 3.10. Replace agent with agent teachable_agent as recommended. * Test on python 3.9 instead of 3.10. * Remove space from name -> teachableagent --------- Co-authored-by: Li Jiang <bnujli@gmail.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2023-10-20 19:27:10 -07:00
"teachable": ["chromadb"],
2020-12-04 09:40:27 -08:00
},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
2020-12-04 09:40:27 -08:00
],
2023-09-16 10:57:57 +00:00
python_requires=">=3.8",
2020-12-04 09:40:27 -08:00
)