mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-18 22:42:54 +00:00
763 lines
24 KiB
Plaintext
763 lines
24 KiB
Plaintext
![]() |
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Anthropic Claude\n",
|
|||
|
"\n",
|
|||
|
"In this notebook, we demonstrate how a to use Anthropic Claude model for AgentChat.\n",
|
|||
|
"\n",
|
|||
|
"## Requirements\n",
|
|||
|
"To use Anthropic Claude with AutoGen, first you need to install the `pyautogen` and `anthropic` package.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"!pip install pyautogen anthropic"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import inspect\n",
|
|||
|
"from typing import Any, Dict, List, Union\n",
|
|||
|
"\n",
|
|||
|
"from anthropic import Anthropic\n",
|
|||
|
"from anthropic.types import Completion, Message\n",
|
|||
|
"\n",
|
|||
|
"import autogen\n",
|
|||
|
"from autogen import AssistantAgent, UserProxyAgent\n",
|
|||
|
"from autogen.oai.openai_utils import OAI_PRICE1K"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Create Anthropic Model Client following ModelClient Protocol\n",
|
|||
|
"\n",
|
|||
|
"We will implement our Anthropic client adhere to the `ModelClient` protocol and response structure which is defined in client.py and shown below.\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"```python\n",
|
|||
|
"class ModelClient(Protocol):\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" A client class must implement the following methods:\n",
|
|||
|
" - create must return a response object that implements the ModelClientResponseProtocol\n",
|
|||
|
" - cost must return the cost of the response\n",
|
|||
|
" - get_usage must return a dict with the following keys:\n",
|
|||
|
" - prompt_tokens\n",
|
|||
|
" - completion_tokens\n",
|
|||
|
" - total_tokens\n",
|
|||
|
" - cost\n",
|
|||
|
" - model\n",
|
|||
|
"\n",
|
|||
|
" This class is used to create a client that can be used by OpenAIWrapper.\n",
|
|||
|
" The response returned from create must adhere to the ModelClientResponseProtocol but can be extended however needed.\n",
|
|||
|
" The message_retrieval method must be implemented to return a list of str or a list of messages from the response.\n",
|
|||
|
" \"\"\"\n",
|
|||
|
"\n",
|
|||
|
" RESPONSE_USAGE_KEYS = [\"prompt_tokens\", \"completion_tokens\", \"total_tokens\", \"cost\", \"model\"]\n",
|
|||
|
"\n",
|
|||
|
" class ModelClientResponseProtocol(Protocol):\n",
|
|||
|
" class Choice(Protocol):\n",
|
|||
|
" class Message(Protocol):\n",
|
|||
|
" content: Optional[str]\n",
|
|||
|
"\n",
|
|||
|
" message: Message\n",
|
|||
|
"\n",
|
|||
|
" choices: List[Choice]\n",
|
|||
|
" model: str\n",
|
|||
|
"\n",
|
|||
|
" def create(self, params) -> ModelClientResponseProtocol:\n",
|
|||
|
" ...\n",
|
|||
|
"\n",
|
|||
|
" def message_retrieval(\n",
|
|||
|
" self, response: ModelClientResponseProtocol\n",
|
|||
|
" ) -> Union[List[str], List[ModelClient.ModelClientResponseProtocol.Choice.Message]]:\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" Retrieve and return a list of strings or a list of Choice.Message from the response.\n",
|
|||
|
"\n",
|
|||
|
" NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,\n",
|
|||
|
" since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" ...\n",
|
|||
|
"\n",
|
|||
|
" def cost(self, response: ModelClientResponseProtocol) -> float:\n",
|
|||
|
" ...\n",
|
|||
|
"\n",
|
|||
|
" @staticmethod\n",
|
|||
|
" def get_usage(response: ModelClientResponseProtocol) -> Dict:\n",
|
|||
|
" \"\"\"Return usage summary of the response using RESPONSE_USAGE_KEYS.\"\"\"\n",
|
|||
|
" ...\n",
|
|||
|
"```\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Implementation of AnthropicClient\n",
|
|||
|
"\n",
|
|||
|
"You can find the introduction to Claude-3-Opus model [here](https://docs.anthropic.com/claude/docs/intro-to-claude). \n",
|
|||
|
"\n",
|
|||
|
"Since anthropic provides their Python SDK with similar structure as OpenAI's, we will following the implementation from `autogen.oai.client.OpenAIClient`.\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"TOOL_ENABLED = False\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"class AnthropicClient:\n",
|
|||
|
" def __init__(self, config: Dict[str, Any]):\n",
|
|||
|
" self._config = config\n",
|
|||
|
" self.model = config[\"model\"]\n",
|
|||
|
" anthropic_kwargs = set(inspect.getfullargspec(Anthropic.__init__).kwonlyargs)\n",
|
|||
|
" filter_dict = {k: v for k, v in config.items() if k in anthropic_kwargs}\n",
|
|||
|
" self._client = Anthropic(**filter_dict)\n",
|
|||
|
"\n",
|
|||
|
" def message_retrieval(self, response: Message) -> Union[List[str], List]:\n",
|
|||
|
" \"\"\"Retrieve the messages from the response.\"\"\"\n",
|
|||
|
" choices = response.content\n",
|
|||
|
" if isinstance(response, Message):\n",
|
|||
|
" return [choice.text for choice in choices] # type: ignore [union-attr]\n",
|
|||
|
"\n",
|
|||
|
" # claude python SDK and API not yet support function calls\n",
|
|||
|
"\n",
|
|||
|
" def create(self, params: Dict[str, Any]) -> Completion:\n",
|
|||
|
" \"\"\"Create a completion for a given config using openai's client.\n",
|
|||
|
"\n",
|
|||
|
" Args:\n",
|
|||
|
" client: The openai client.\n",
|
|||
|
" params: The params for the completion.\n",
|
|||
|
"\n",
|
|||
|
" Returns:\n",
|
|||
|
" The completion.\n",
|
|||
|
" \"\"\"\n",
|
|||
|
" if \"messages\" in params:\n",
|
|||
|
" raw_contents = params[\"messages\"]\n",
|
|||
|
" if raw_contents[0][\"role\"] == \"system\":\n",
|
|||
|
" raw_contents = raw_contents[1:]\n",
|
|||
|
" params[\"messages\"] = raw_contents\n",
|
|||
|
" completions: Completion = self._client.messages # type: ignore [attr-defined]\n",
|
|||
|
" else:\n",
|
|||
|
" completions: Completion = self._client.completions\n",
|
|||
|
"\n",
|
|||
|
" # Not yet support stream\n",
|
|||
|
" params = params.copy()\n",
|
|||
|
" params[\"stream\"] = False\n",
|
|||
|
" params.pop(\"model_client_cls\")\n",
|
|||
|
" response = completions.create(**params)\n",
|
|||
|
"\n",
|
|||
|
" return response\n",
|
|||
|
"\n",
|
|||
|
" def cost(self, response: Completion) -> float:\n",
|
|||
|
" \"\"\"Calculate the cost of the response.\"\"\"\n",
|
|||
|
" total = 0.0\n",
|
|||
|
" tokens = {\n",
|
|||
|
" \"input\": response.usage.input_tokens if response.usage is not None else 0,\n",
|
|||
|
" \"output\": response.usage.output_tokens if response.usage is not None else 0,\n",
|
|||
|
" }\n",
|
|||
|
" price_per_million = {\n",
|
|||
|
" \"input\": 15,\n",
|
|||
|
" \"output\": 75,\n",
|
|||
|
" }\n",
|
|||
|
" for key, value in tokens.items():\n",
|
|||
|
" total += value * price_per_million[key] / 1_000_000\n",
|
|||
|
"\n",
|
|||
|
" return total\n",
|
|||
|
"\n",
|
|||
|
" @staticmethod\n",
|
|||
|
" def get_usage(response: Completion) -> Dict:\n",
|
|||
|
"\n",
|
|||
|
" return {\n",
|
|||
|
" \"prompt_tokens\": response.usage.input_tokens if response.usage is not None else 0,\n",
|
|||
|
" \"completion_tokens\": response.usage.output_tokens if response.usage is not None else 0,\n",
|
|||
|
" \"total_tokens\": (\n",
|
|||
|
" response.usage.input_tokens + response.usage.output_tokens if response.usage is not None else 0\n",
|
|||
|
" ),\n",
|
|||
|
" \"cost\": response.cost if hasattr(response, \"cost\") else 0,\n",
|
|||
|
" \"model\": response.model,\n",
|
|||
|
" }"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Set the config for the Anthropic API\n",
|
|||
|
"\n",
|
|||
|
"You can add any parameters that are needed for the custom model loading in the same configuration list.\n",
|
|||
|
"\n",
|
|||
|
"It is important to add the `model_client_cls` field and set it to a string that corresponds to the class name: `\"CustomModelClient\"`."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import os\n",
|
|||
|
"\n",
|
|||
|
"config_list_claude = [\n",
|
|||
|
" {\n",
|
|||
|
" # Choose your model name.\n",
|
|||
|
" \"model\": \"claude-3-opus-20240229\",\n",
|
|||
|
" # You need to provide your API key here.\n",
|
|||
|
" \"api_key\": os.getenv(\"ANTHROPIC_API_KEY\"),\n",
|
|||
|
" \"base_url\": \"https://api.anthropic.com\",\n",
|
|||
|
" \"api_type\": \"anthropic\",\n",
|
|||
|
" \"model_client_cls\": \"AnthropicClient\",\n",
|
|||
|
" }\n",
|
|||
|
"]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Construct Agents\n",
|
|||
|
"\n",
|
|||
|
"Construct a simple conversation between a User proxy and an ConversableAgent based on Claude-3 model.\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"`max_tokens` argument is mandatory in the `llm_config`."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[autogen.oai.client: 04-02 22:48:52] {418} INFO - Detected custom model client in config: AnthropicClient, model client can not be used until register_model_client is called.\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"assistant = AssistantAgent(\n",
|
|||
|
" \"assistant\",\n",
|
|||
|
" llm_config={\n",
|
|||
|
" \"config_list\": config_list_claude,\n",
|
|||
|
" \"max_tokens\": 100,\n",
|
|||
|
" },\n",
|
|||
|
")\n",
|
|||
|
"user_proxy = UserProxyAgent(\n",
|
|||
|
" \"user_proxy\",\n",
|
|||
|
" code_execution_config=False,\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"## Register the custom client class to the assistant agent"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"assistant.register_model_client(model_client_cls=AnthropicClient)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n",
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n",
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"user_proxy (to assistant):\n",
|
|||
|
"\n",
|
|||
|
"Who are you?\n",
|
|||
|
"\n",
|
|||
|
"--------------------------------------------------------------------------------\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n",
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"assistant (to user_proxy):\n",
|
|||
|
"\n",
|
|||
|
"I am an artificial intelligence called Claude. I was created by Anthropic to be an intelligent conversational assistant, but I'm not a real person.\n",
|
|||
|
"\n",
|
|||
|
"--------------------------------------------------------------------------------\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n",
|
|||
|
"No default IOStream has been set, defaulting to IOConsole.\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"ChatResult(chat_id=None, chat_history=[{'content': 'Who are you?', 'role': 'assistant'}, {'content': \"I am an artificial intelligence called Claude. I was created by Anthropic to be an intelligent conversational assistant, but I'm not a real person.\", 'role': 'user'}], summary=\"I am an artificial intelligence called Claude. I was created by Anthropic to be an intelligent conversational assistant, but I'm not a real person.\", cost=({'total_cost': 0, 'claude-3-opus-20240229': {'cost': 0, 'prompt_tokens': 11, 'completion_tokens': 34, 'total_tokens': 45}}, {'total_cost': 0, 'claude-3-opus-20240229': {'cost': 0, 'prompt_tokens': 11, 'completion_tokens': 34, 'total_tokens': 45}}), human_input=['exit'])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"user_proxy.initiate_chat(\n",
|
|||
|
" assistant,\n",
|
|||
|
" message=\"Who are you?\",\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"front_matter": {
|
|||
|
"description": "Define and load a custom model",
|
|||
|
"tags": [
|
|||
|
"custom model"
|
|||
|
]
|
|||
|
},
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.9.7"
|
|||
|
},
|
|||
|
"vscode": {
|
|||
|
"interpreter": {
|
|||
|
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
|
|||
|
}
|
|||
|
},
|
|||
|
"widgets": {
|
|||
|
"application/vnd.jupyter.widget-state+json": {
|
|||
|
"state": {
|
|||
|
"2d910cfd2d2a4fc49fc30fbbdc5576a7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border_bottom": null,
|
|||
|
"border_left": null,
|
|||
|
"border_right": null,
|
|||
|
"border_top": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"454146d0f7224f038689031002906e6f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
|
|||
|
"IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
|
|||
|
"IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
|
|||
|
"tabbable": null,
|
|||
|
"tooltip": null
|
|||
|
}
|
|||
|
},
|
|||
|
"577e1e3cc4db4942b0883577b3b52755": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "",
|
|||
|
"description_allow_html": false,
|
|||
|
"layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
|
|||
|
"max": 1,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
|
|||
|
"tabbable": null,
|
|||
|
"tooltip": null,
|
|||
|
"value": 1
|
|||
|
}
|
|||
|
},
|
|||
|
"6086462a12d54bafa59d3c4566f06cb2": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border_bottom": null,
|
|||
|
"border_left": null,
|
|||
|
"border_right": null,
|
|||
|
"border_top": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"74a6ba0c3cbc4051be0a83e152fe1e62": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"7d3f3d9e15894d05a4d188ff4f466554": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "HTMLStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "HTMLStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"background": null,
|
|||
|
"description_width": "",
|
|||
|
"font_size": null,
|
|||
|
"text_color": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b40bdfb1ac1d4cffb7cefcb870c64d45": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_allow_html": false,
|
|||
|
"layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
|
|||
|
"tabbable": null,
|
|||
|
"tooltip": null,
|
|||
|
"value": " 1/1 [00:00<00:00, 44.69it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"ca245376fd9f4354af6b2befe4af4466": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "HTMLStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "HTMLStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"background": null,
|
|||
|
"description_width": "",
|
|||
|
"font_size": null,
|
|||
|
"text_color": null
|
|||
|
}
|
|||
|
},
|
|||
|
"dc83c7bff2f241309537a8119dfc7555": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border_bottom": null,
|
|||
|
"border_left": null,
|
|||
|
"border_right": null,
|
|||
|
"border_top": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e4ae2b6f5a974fd4bafb6abb9d12ff26": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_allow_html": false,
|
|||
|
"layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
|
|||
|
"tabbable": null,
|
|||
|
"tooltip": null,
|
|||
|
"value": "100%"
|
|||
|
}
|
|||
|
},
|
|||
|
"f1355871cc6f4dd4b50d9df5af20e5c8": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_module_version": "2.0.0",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "2.0.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "2.0.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border_bottom": null,
|
|||
|
"border_left": null,
|
|||
|
"border_right": null,
|
|||
|
"border_top": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|