mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-26 18:31:36 +00:00
236 lines
8.9 KiB
Python
236 lines
8.9 KiB
Python
![]() |
import unittest
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse
|
||
|
from sklearn.datasets import load_boston, load_iris
|
||
|
|
||
|
from flaml import AutoML, get_output_from_log
|
||
|
|
||
|
|
||
|
def custom_metric(X_test, y_test, estimator, labels, X_train, y_train):
|
||
|
from sklearn.metrics import log_loss
|
||
|
y_pred = estimator.predict_proba(X_test)
|
||
|
test_loss = log_loss(y_test, y_pred, labels=labels)
|
||
|
y_pred = estimator.predict_proba(X_train)
|
||
|
train_loss = log_loss(y_train, y_pred, labels=labels)
|
||
|
alpha = 0.5
|
||
|
return test_loss * (1 + alpha) - alpha * train_loss, [test_loss, train_loss]
|
||
|
|
||
|
|
||
|
class TestAutoML(unittest.TestCase):
|
||
|
|
||
|
def test_dataframe(self):
|
||
|
self.test_classification(True)
|
||
|
|
||
|
def test_custom_metric(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 10,
|
||
|
'eval_method': 'holdout',
|
||
|
"metric": custom_metric,
|
||
|
"task": 'classification',
|
||
|
"log_file_name": "test/iris_custom.log",
|
||
|
"log_training_metric": True,
|
||
|
'log_type': 'all',
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train, y_train = load_iris(return_X_y=True)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.classes_)
|
||
|
print(automl_experiment.predict_proba(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
automl_experiment = AutoML()
|
||
|
estimator = automl_experiment.get_estimator_from_log(
|
||
|
automl_settings["log_file_name"], record_id=0,
|
||
|
objective='multi')
|
||
|
print(estimator)
|
||
|
time_history, best_valid_loss_history, valid_loss_history, \
|
||
|
config_history, train_loss_history = get_output_from_log(
|
||
|
filename=automl_settings['log_file_name'], time_budget=6)
|
||
|
print(train_loss_history)
|
||
|
|
||
|
def test_classification(self, as_frame=False):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 4,
|
||
|
"metric": 'accuracy',
|
||
|
"task": 'classification',
|
||
|
"log_file_name": "test/iris.log",
|
||
|
"log_training_metric": True,
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.classes_)
|
||
|
print(automl_experiment.predict_proba(X_train)[:5])
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
del automl_settings["metric"]
|
||
|
del automl_settings["model_history"]
|
||
|
del automl_settings["log_training_metric"]
|
||
|
automl_experiment = AutoML()
|
||
|
duration = automl_experiment.retrain_from_log(
|
||
|
log_file_name=automl_settings["log_file_name"],
|
||
|
X_train=X_train, y_train=y_train,
|
||
|
train_full=True, record_id=0)
|
||
|
print(duration)
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.predict_proba(X_train)[:5])
|
||
|
|
||
|
def test_regression(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
"metric": 'mse',
|
||
|
"task": 'regression',
|
||
|
"log_file_name": "test/boston.log",
|
||
|
"log_training_metric": True,
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train, y_train = load_boston(return_X_y=True)
|
||
|
n = len(y_train)
|
||
|
automl_experiment.fit(X_train=X_train[:n >> 1], y_train=y_train[:n >> 1],
|
||
|
X_val=X_train[n >> 1:], y_val=y_train[n >> 1:],
|
||
|
**automl_settings)
|
||
|
assert automl_experiment.y_val.shape[0] == n - (n >> 1)
|
||
|
assert automl_experiment.eval_method == 'holdout'
|
||
|
print(automl_experiment.predict(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
print(get_output_from_log(automl_settings["log_file_name"], 1))
|
||
|
|
||
|
def test_sparse_matrix_classification(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
"metric": 'auto',
|
||
|
"task": 'classification',
|
||
|
"log_file_name": "test/sparse_classification.log",
|
||
|
"split_type": "uniform",
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train = scipy.sparse.random(1554, 21, dtype=int)
|
||
|
y_train = np.random.randint(3, size=1554)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.classes_)
|
||
|
print(automl_experiment.predict_proba(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
|
||
|
def test_sparse_matrix_regression(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
"metric": 'mae',
|
||
|
"task": 'regression',
|
||
|
"log_file_name": "test/sparse_regression.log",
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train = scipy.sparse.random(300, 900, density=0.0001)
|
||
|
y_train = np.random.uniform(size=300)
|
||
|
X_val = scipy.sparse.random(100, 900, density=0.0001)
|
||
|
y_val = np.random.uniform(size=100)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
X_val=X_val, y_val=y_val,
|
||
|
**automl_settings)
|
||
|
assert automl_experiment.X_val.shape == X_val.shape
|
||
|
print(automl_experiment.predict(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
print(automl_experiment.best_config)
|
||
|
print(automl_experiment.best_loss)
|
||
|
print(automl_experiment.best_config_train_time)
|
||
|
|
||
|
def test_sparse_matrix_xgboost(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
"metric": 'ap',
|
||
|
"task": 'classification',
|
||
|
"log_file_name": "test/sparse_classification.log",
|
||
|
"estimator_list": ["xgboost"],
|
||
|
"log_type": "all",
|
||
|
}
|
||
|
X_train = scipy.sparse.eye(900000)
|
||
|
y_train = np.random.randint(2, size=900000)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.predict(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
|
||
|
def test_sparse_matrix_lr(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
"metric": 'f1',
|
||
|
"task": 'classification',
|
||
|
"log_file_name": "test/sparse_classification.log",
|
||
|
"estimator_list": ["lrl1", "lrl2"],
|
||
|
"log_type": "all",
|
||
|
}
|
||
|
X_train = scipy.sparse.random(3000, 900, density=0.1)
|
||
|
y_train = np.random.randint(2, size=3000)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.predict(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
|
||
|
def test_sparse_matrix_regression_cv(self):
|
||
|
|
||
|
automl_experiment = AutoML()
|
||
|
automl_settings = {
|
||
|
"time_budget": 2,
|
||
|
'eval_method': 'cv',
|
||
|
"task": 'regression',
|
||
|
"log_file_name": "test/sparse_regression.log",
|
||
|
"model_history": True
|
||
|
}
|
||
|
X_train = scipy.sparse.random(100, 100)
|
||
|
y_train = np.random.uniform(size=100)
|
||
|
automl_experiment.fit(X_train=X_train, y_train=y_train,
|
||
|
**automl_settings)
|
||
|
print(automl_experiment.predict(X_train))
|
||
|
print(automl_experiment.model)
|
||
|
print(automl_experiment.config_history)
|
||
|
print(automl_experiment.model_history)
|
||
|
print(automl_experiment.best_iteration)
|
||
|
print(automl_experiment.best_estimator)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|