2023-02-24 16:07:00 +08:00
|
|
|
import os
|
|
|
|
import time
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
from sklearn.datasets import load_iris
|
|
|
|
|
|
|
|
from flaml import AutoML
|
|
|
|
|
|
|
|
try:
|
|
|
|
from test.spark.custom_mylearner import *
|
|
|
|
except ImportError:
|
|
|
|
from custom_mylearner import *
|
|
|
|
|
Support spark dataframe as input dataset and spark models as estimators (#934)
* add basic support to Spark dataframe
add support to SynapseML LightGBM model
update to pyspark>=3.2.0 to leverage pandas_on_Spark API
* clean code, add TODOs
* add sample_train_data for pyspark.pandas dataframe, fix bugs
* improve some functions, fix bugs
* fix dict change size during iteration
* update model predict
* update LightGBM model, update test
* update SynapseML LightGBM params
* update synapseML and tests
* update TODOs
* Added support to roc_auc for spark models
* Added support to score of spark estimator
* Added test for automl score of spark estimator
* Added cv support to pyspark.pandas dataframe
* Update test, fix bugs
* Added tests
* Updated docs, tests, added a notebook
* Fix bugs in non-spark env
* Fix bugs and improve tests
* Fix uninstall pyspark
* Fix tests error
* Fix java.lang.OutOfMemoryError: Java heap space
* Fix test_performance
* Update test_sparkml to test_0sparkml to use the expected spark conf
* Remove unnecessary widgets in notebook
* Fix iloc java.lang.StackOverflowError
* fix pre-commit
* Added params check for spark dataframes
* Refactor code for train_test_split to a function
* Update train_test_split_pyspark
* Refactor if-else, remove unnecessary code
* Remove y from predict, remove mem control from n_iter compute
* Update workflow
* Improve _split_pyspark
* Fix test failure of too short training time
* Fix typos, improve docstrings
* Fix index errors of pandas_on_spark, add spark loss metric
* Fix typo of ndcgAtK
* Update NDCG metrics and tests
* Remove unuseful logger
* Use cache and count to ensure consistent indexes
* refactor for merge maain
* fix errors of refactor
* Updated SparkLightGBMEstimator and cache
* Updated config2params
* Remove unused import
* Fix unknown parameters
* Update default_estimator_list
* Add unit tests for spark metrics
2023-03-26 03:59:46 +08:00
|
|
|
try:
|
|
|
|
import pyspark
|
|
|
|
from flaml.tune.spark.utils import check_spark
|
|
|
|
from flaml.tune.spark.mylearner import lazy_metric
|
|
|
|
|
|
|
|
os.environ["FLAML_MAX_CONCURRENT"] = "10"
|
|
|
|
spark = pyspark.sql.SparkSession.builder.appName("App4OvertimeTest").getOrCreate()
|
|
|
|
spark_available, _ = check_spark()
|
|
|
|
skip_spark = not spark_available
|
|
|
|
except ImportError:
|
|
|
|
skip_spark = True
|
2023-02-24 16:07:00 +08:00
|
|
|
|
|
|
|
pytestmark = pytest.mark.skipif(
|
|
|
|
skip_spark, reason="Spark is not installed. Skip all spark tests."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_overtime():
|
|
|
|
time_budget = 15
|
|
|
|
df, y = load_iris(return_X_y=True, as_frame=True)
|
|
|
|
df["label"] = y
|
|
|
|
automl_experiment = AutoML()
|
|
|
|
automl_settings = {
|
|
|
|
"dataframe": df,
|
|
|
|
"label": "label",
|
|
|
|
"time_budget": time_budget,
|
|
|
|
"eval_method": "cv",
|
|
|
|
"metric": lazy_metric,
|
|
|
|
"task": "classification",
|
|
|
|
"log_file_name": "test/iris_custom.log",
|
|
|
|
"log_training_metric": True,
|
|
|
|
"log_type": "all",
|
|
|
|
"n_jobs": 1,
|
|
|
|
"model_history": True,
|
|
|
|
"sample_weight": np.ones(len(y)),
|
|
|
|
"pred_time_limit": 1e-5,
|
|
|
|
"estimator_list": ["lgbm"],
|
|
|
|
"n_concurrent_trials": 2,
|
|
|
|
"use_spark": True,
|
|
|
|
"force_cancel": True,
|
|
|
|
}
|
|
|
|
start_time = time.time()
|
|
|
|
automl_experiment.fit(**automl_settings)
|
|
|
|
elapsed_time = time.time() - start_time
|
|
|
|
print(
|
|
|
|
"time budget: {:.2f}s, actual elapsed time: {:.2f}s".format(
|
|
|
|
time_budget, elapsed_time
|
|
|
|
)
|
|
|
|
)
|
|
|
|
assert abs(elapsed_time - time_budget) < 2
|
|
|
|
print(automl_experiment.predict(df))
|
|
|
|
print(automl_experiment.model)
|
|
|
|
print(automl_experiment.best_iteration)
|
|
|
|
print(automl_experiment.best_estimator)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_overtime()
|