2021-09-01 16:25:04 -07:00
|
|
|
import numpy as np
|
|
|
|
from flaml import AutoML
|
|
|
|
|
|
|
|
|
|
|
|
def test_forecast_automl(budget=5):
|
2021-08-23 16:26:46 -04:00
|
|
|
# using dataframe
|
|
|
|
import statsmodels.api as sm
|
2021-09-01 16:25:04 -07:00
|
|
|
data = sm.datasets.co2.load_pandas().data['co2'].resample('MS').mean()
|
|
|
|
data = data.fillna(data.bfill()).to_frame().reset_index().rename(
|
|
|
|
columns={'index': 'ds', 'co2': 'y'})
|
2021-08-23 16:26:46 -04:00
|
|
|
num_samples = data.shape[0]
|
|
|
|
time_horizon = 12
|
|
|
|
split_idx = num_samples - time_horizon
|
2021-09-01 16:25:04 -07:00
|
|
|
df = data[:split_idx]
|
|
|
|
X_test = data[split_idx:]['ds']
|
|
|
|
y_test = data[split_idx:]['y']
|
2021-08-23 16:26:46 -04:00
|
|
|
automl = AutoML()
|
|
|
|
settings = {
|
|
|
|
"time_budget": budget, # total running time in seconds
|
|
|
|
"metric": 'mape', # primary metric
|
|
|
|
"task": 'forecast', # task type
|
|
|
|
"log_file_name": 'CO2_forecast.log', # flaml log file
|
|
|
|
"eval_method": "holdout",
|
|
|
|
}
|
|
|
|
'''The main flaml automl API'''
|
|
|
|
try:
|
2021-09-01 16:25:04 -07:00
|
|
|
automl.fit(dataframe=df, **settings, period=time_horizon)
|
2021-08-23 16:26:46 -04:00
|
|
|
except ImportError:
|
2021-09-01 16:25:04 -07:00
|
|
|
print("not using FBProphet due to ImportError")
|
|
|
|
automl.fit(dataframe=df, **settings, estimator_list=[
|
|
|
|
'arima', 'sarimax'], period=time_horizon)
|
2021-08-23 16:26:46 -04:00
|
|
|
''' retrieve best config and best learner'''
|
|
|
|
print('Best ML leaner:', automl.best_estimator)
|
|
|
|
print('Best hyperparmeter config:', automl.best_config)
|
|
|
|
print(f'Best mape on validation data: {automl.best_loss}')
|
|
|
|
print(f'Training duration of best run: {automl.best_config_train_time}s')
|
|
|
|
print(automl.model.estimator)
|
|
|
|
''' pickle and save the automl object '''
|
|
|
|
import pickle
|
|
|
|
with open('automl.pkl', 'wb') as f:
|
|
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
|
|
''' compute predictions of testing dataset '''
|
|
|
|
y_pred = automl.predict(X_test)
|
|
|
|
print('Predicted labels', y_pred)
|
|
|
|
print('True labels', y_test)
|
|
|
|
''' compute different metric values on testing dataset'''
|
|
|
|
from flaml.ml import sklearn_metric_loss_score
|
|
|
|
print('mape', '=', sklearn_metric_loss_score('mape', y_pred, y_test))
|
|
|
|
from flaml.data import get_output_from_log
|
2021-09-01 16:25:04 -07:00
|
|
|
time_history, best_valid_loss_history, valid_loss_history, config_history, metric_history = \
|
2021-08-23 16:26:46 -04:00
|
|
|
get_output_from_log(filename=settings['log_file_name'], time_budget=budget)
|
|
|
|
for config in config_history:
|
|
|
|
print(config)
|
|
|
|
print(automl.prune_attr)
|
|
|
|
print(automl.max_resource)
|
|
|
|
print(automl.min_resource)
|
|
|
|
|
2021-09-01 16:25:04 -07:00
|
|
|
X_train = df['ds']
|
|
|
|
y_train = df['y']
|
|
|
|
automl = AutoML()
|
|
|
|
try:
|
|
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
|
|
|
|
except ImportError:
|
|
|
|
print("not using FBProphet due to ImportError")
|
|
|
|
automl.fit(X_train=X_train, y_train=y_train, **settings, estimator_list=[
|
|
|
|
'arima', 'sarimax'], period=time_horizon)
|
2021-08-23 16:26:46 -04:00
|
|
|
|
2021-09-01 16:25:04 -07:00
|
|
|
|
|
|
|
def test_numpy():
|
|
|
|
X_train = np.arange('2014-01', '2021-01', dtype='datetime64[M]')
|
|
|
|
y_train = np.random.random(size=72)
|
2021-08-23 16:26:46 -04:00
|
|
|
automl = AutoML()
|
|
|
|
try:
|
2021-09-01 16:25:04 -07:00
|
|
|
automl.fit(
|
|
|
|
X_train=X_train[:60], # a single column of timestamp
|
|
|
|
y_train=y_train, # value for each timestamp
|
|
|
|
period=12, # time horizon to forecast, e.g., 12 months
|
|
|
|
task='forecast', time_budget=3, # time budget in seconds
|
|
|
|
log_file_name="test/forecast.log")
|
|
|
|
print(automl.predict(X_train[60:]))
|
|
|
|
print(automl.predict(12))
|
|
|
|
except ValueError:
|
|
|
|
print("ValueError for FBProphet is raised as expected.")
|
2021-08-23 16:26:46 -04:00
|
|
|
except ImportError:
|
2021-09-01 16:25:04 -07:00
|
|
|
print("not using FBProphet due to ImportError")
|
|
|
|
automl = AutoML()
|
|
|
|
automl.fit(
|
|
|
|
X_train=X_train[:72], # a single column of timestamp
|
|
|
|
y_train=y_train, # value for each timestamp
|
|
|
|
period=12, # time horizon to forecast, e.g., 12 months
|
|
|
|
task='forecast', time_budget=1, # time budget in seconds
|
|
|
|
estimator_list=['arima', 'sarimax'],
|
|
|
|
log_file_name="test/forecast.log")
|
|
|
|
print(automl.predict(X_train[72:]))
|
|
|
|
# an alternative way to specify predict steps for arima/sarimax
|
|
|
|
print(automl.predict(12))
|
2021-08-23 16:26:46 -04:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-09-01 16:25:04 -07:00
|
|
|
test_forecast_automl(60)
|