autogen/test/automl/test_multiclass.py

574 lines
20 KiB
Python
Raw Normal View History

2020-12-04 09:40:27 -08:00
import unittest
import numpy as np
import scipy.sparse
from sklearn.datasets import load_iris, load_wine
from flaml import AutoML
Refactor into automl subpackage (#809) * Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 20:46:08 +00:00
from flaml.automl.data import CLASSIFICATION, get_output_from_log
from flaml.automl.model import LGBMEstimator, XGBoostSklearnEstimator, SKLearnEstimator
from flaml import tune
Refactor into automl subpackage (#809) * Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 20:46:08 +00:00
from flaml.automl.training_log import training_log_reader
class MyRegularizedGreedyForest(SKLearnEstimator):
def __init__(self, task="binary", **config):
super().__init__(task, **config)
if task in CLASSIFICATION:
from rgf.sklearn import RGFClassifier
self.estimator_class = RGFClassifier
else:
from rgf.sklearn import RGFRegressor
2021-10-16 01:11:12 -07:00
self.estimator_class = RGFRegressor
@classmethod
def search_space(cls, data_size, task):
space = {
"max_leaf": {
"domain": tune.lograndint(lower=4, upper=data_size[0]),
"init_value": 4,
},
"n_iter": {
"domain": tune.lograndint(lower=1, upper=data_size[0]),
"init_value": 1,
},
"n_tree_search": {
"domain": tune.lograndint(lower=1, upper=32768),
"init_value": 1,
},
"opt_interval": {
"domain": tune.lograndint(lower=1, upper=10000),
"init_value": 100,
},
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
"min_samples_leaf": {
"domain": tune.lograndint(lower=1, upper=20),
"init_value": 20,
},
}
return space
2020-12-04 09:40:27 -08:00
@classmethod
def size(cls, config):
max_leaves = int(round(config.get("max_leaf", 1)))
n_estimators = int(round(config.get("n_iter", 1)))
return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8
2020-12-04 09:40:27 -08:00
@classmethod
def cost_relative2lgbm(cls):
return 1.0
class MyLargeXGB(XGBoostSklearnEstimator):
@classmethod
def search_space(cls, **params):
return {
"n_estimators": {
"domain": tune.lograndint(lower=4, upper=32768),
"init_value": 32768,
"low_cost_init_value": 4,
},
"max_leaves": {
"domain": tune.lograndint(lower=4, upper=3276),
"init_value": 3276,
"low_cost_init_value": 4,
},
}
class MyLargeLGBM(LGBMEstimator):
@classmethod
def search_space(cls, **params):
return {
"n_estimators": {
"domain": tune.lograndint(lower=4, upper=32768),
"init_value": 32768,
"low_cost_init_value": 4,
},
"num_leaves": {
"domain": tune.lograndint(lower=4, upper=3276),
"init_value": 3276,
"low_cost_init_value": 4,
},
}
def custom_metric(
X_val,
y_val,
estimator,
labels,
X_train,
y_train,
weight_val=None,
weight_train=None,
config=None,
groups_val=None,
groups_train=None,
):
2020-12-04 09:40:27 -08:00
from sklearn.metrics import log_loss
import time
start = time.time()
y_pred = estimator.predict_proba(X_val)
pred_time = (time.time() - start) / len(X_val)
val_loss = log_loss(y_val, y_pred, labels=labels, sample_weight=weight_val)
2020-12-04 09:40:27 -08:00
y_pred = estimator.predict_proba(X_train)
train_loss = log_loss(y_train, y_pred, labels=labels, sample_weight=weight_train)
2020-12-04 09:40:27 -08:00
alpha = 0.5
return val_loss * (1 + alpha) - alpha * train_loss, {
"val_loss": val_loss,
"train_loss": train_loss,
"pred_time": pred_time,
}
2020-12-04 09:40:27 -08:00
class TestMultiClass(unittest.TestCase):
def test_custom_learner(self):
automl = AutoML()
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
X_train, y_train = load_wine(return_X_y=True)
settings = {
"time_budget": 8, # total running time in seconds
"estimator_list": ["RGF", "lgbm", "rf", "xgboost"],
"task": "classification", # task type
"sample": True, # whether to subsample training data
"log_file_name": "test/wine.log",
"log_training_metric": True, # whether to log training metric
"n_jobs": 1,
}
automl.fit(X_train=X_train, y_train=y_train, **settings)
# print the best model found for RGF
print(automl.best_model_for_estimator("RGF"))
MyRegularizedGreedyForest.search_space = lambda data_size, task: {}
automl.fit(X_train=X_train, y_train=y_train, **settings)
try:
import ray
del settings["time_budget"]
settings["max_iter"] = 5
# test the "_choice_" issue when using ray
automl.fit(
X_train=X_train, y_train=y_train, n_concurrent_trials=2, **settings
)
except ImportError:
return
def test_ensemble(self):
automl = AutoML()
automl.add_learner(learner_name="RGF", learner_class=MyRegularizedGreedyForest)
X_train, y_train = load_wine(return_X_y=True)
settings = {
"time_budget": 5, # total running time in seconds
"estimator_list": ["rf", "xgboost", "catboost"],
"task": "classification", # task type
"sample": True, # whether to subsample training data
"log_file_name": "test/wine.log",
"log_training_metric": True, # whether to log training metric
"ensemble": {
"final_estimator": MyRegularizedGreedyForest(),
"passthrough": False,
},
"n_jobs": 1,
}
automl.fit(X_train=X_train, y_train=y_train, **settings)
2020-12-04 09:40:27 -08:00
def test_dataframe(self):
self.test_classification(True)
def test_custom_metric(self):
df, y = load_iris(return_X_y=True, as_frame=True)
df["label"] = y
automl = AutoML()
settings = {
"dataframe": df,
"label": "label",
2021-06-18 21:19:59 -07:00
"time_budget": 5,
"eval_method": "cv",
2020-12-04 09:40:27 -08:00
"metric": custom_metric,
"task": "classification",
2020-12-04 09:40:27 -08:00
"log_file_name": "test/iris_custom.log",
"log_training_metric": True,
"log_type": "all",
"n_jobs": 1,
"model_history": True,
"sample_weight": np.ones(len(y)),
"pred_time_limit": 1e-5,
"ensemble": True,
2020-12-04 09:40:27 -08:00
}
automl.fit(**settings)
print(automl.classes_)
print(automl.model)
print(automl.config_history)
print(automl.best_model_for_estimator("rf"))
print(automl.best_iteration)
print(automl.best_estimator)
automl = AutoML()
estimator = automl.get_estimator_from_log(
settings["log_file_name"], record_id=0, task="multiclass"
)
2020-12-04 09:40:27 -08:00
print(estimator)
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=6)
print(metric_history)
try:
import ray
df = ray.put(df)
settings["dataframe"] = df
settings["use_ray"] = True
del settings["time_budget"]
settings["max_iter"] = 2
automl.fit(**settings)
estimator = automl.get_estimator_from_log(
settings["log_file_name"], record_id=1, task="multiclass"
)
except ImportError:
pass
2020-12-04 09:40:27 -08:00
def test_classification(self, as_frame=False):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 4,
"metric": "accuracy",
"task": "classification",
2020-12-04 09:40:27 -08:00
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
2020-12-04 09:40:27 -08:00
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
if as_frame:
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
2020-12-04 09:40:27 -08:00
print(automl_experiment.classes_)
print(automl_experiment.predict(X_train)[:5])
2020-12-04 09:40:27 -08:00
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.best_model_for_estimator("catboost"))
2020-12-04 09:40:27 -08:00
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
del automl_settings["metric"]
del automl_settings["model_history"]
del automl_settings["log_training_metric"]
automl_experiment = AutoML(task="classification")
2020-12-04 09:40:27 -08:00
duration = automl_experiment.retrain_from_log(
log_file_name=automl_settings["log_file_name"],
X_train=X_train,
y_train=y_train,
train_full=True,
record_id=0,
)
2020-12-04 09:40:27 -08:00
print(duration)
print(automl_experiment.model)
print(automl_experiment.predict_proba(X_train)[:5])
def test_micro_macro_f1(self):
automl_experiment_micro = AutoML()
automl_experiment_macro = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/micro_macro_f1.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True)
automl_experiment_micro.fit(
X_train=X_train, y_train=y_train, metric="micro_f1", **automl_settings
)
automl_experiment_macro.fit(
X_train=X_train, y_train=y_train, metric="macro_f1", **automl_settings
)
estimator = automl_experiment_macro.model
y_pred = estimator.predict(X_train)
y_pred_proba = estimator.predict_proba(X_train)
Refactor into automl subpackage (#809) * Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 20:46:08 +00:00
from flaml.automl.ml import norm_confusion_matrix, multi_class_curves
print(norm_confusion_matrix(y_train, y_pred))
from sklearn.metrics import roc_curve, precision_recall_curve
print(multi_class_curves(y_train, y_pred_proba, roc_curve))
print(multi_class_curves(y_train, y_pred_proba, precision_recall_curve))
def test_roc_auc_ovr(self):
automl_experiment = AutoML()
X_train, y_train = load_iris(return_X_y=True)
automl_settings = {
"time_budget": 1,
"metric": "roc_auc_ovr",
"task": "classification",
"log_file_name": "test/roc_auc_ovr.log",
"log_training_metric": True,
"n_jobs": 1,
"sample_weight": np.ones(len(y_train)),
"eval_method": "holdout",
"model_history": True,
}
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
def test_roc_auc_ovo(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 1,
"metric": "roc_auc_ovo",
"task": "classification",
"log_file_name": "test/roc_auc_ovo.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True)
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
def test_roc_auc_ovr_weighted(self):
automl = AutoML()
settings = {
"time_budget": 1,
"metric": "roc_auc_ovr_weighted",
"task": "classification",
"log_file_name": "test/roc_auc_weighted.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True)
automl.fit(X_train=X_train, y_train=y_train, **settings)
def test_roc_auc_ovo_weighted(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 1,
"metric": "roc_auc_ovo_weighted",
"task": "classification",
"log_file_name": "test/roc_auc_weighted.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True)
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
2020-12-04 09:40:27 -08:00
def test_sparse_matrix_classification(self):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 2,
"metric": "auto",
"task": "classification",
2020-12-04 09:40:27 -08:00
"log_file_name": "test/sparse_classification.log",
"split_type": "uniform",
"n_jobs": 1,
"model_history": True,
2020-12-04 09:40:27 -08:00
}
X_train = scipy.sparse.random(1554, 21, dtype=int)
y_train = np.random.randint(3, size=1554)
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
2020-12-04 09:40:27 -08:00
print(automl_experiment.classes_)
print(automl_experiment.predict_proba(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.best_model_for_estimator("extra_tree"))
2020-12-04 09:40:27 -08:00
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
def _test_memory_limit(self):
2020-12-04 09:40:27 -08:00
automl_experiment = AutoML()
automl_experiment.add_learner(
learner_name="large_lgbm", learner_class=MyLargeLGBM
)
2020-12-04 09:40:27 -08:00
automl_settings = {
"time_budget": -1,
"task": "classification",
"log_file_name": "test/classification_oom.log",
"estimator_list": ["large_lgbm"],
2020-12-04 09:40:27 -08:00
"log_type": "all",
"hpo_method": "random",
"free_mem_ratio": 0.2,
2020-12-04 09:40:27 -08:00
}
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
automl_experiment.fit(
X_train=X_train, y_train=y_train, max_iter=1, **automl_settings
)
2020-12-04 09:40:27 -08:00
print(automl_experiment.model)
def test_time_limit(self):
automl_experiment = AutoML()
automl_experiment.add_learner(
learner_name="large_lgbm", learner_class=MyLargeLGBM
)
automl_experiment.add_learner(
learner_name="large_xgb", learner_class=MyLargeXGB
)
automl_settings = {
"time_budget": 0.5,
"task": "classification",
"log_file_name": "test/classification_timeout.log",
"estimator_list": ["catboost"],
"log_type": "all",
"hpo_method": "random",
}
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
print(automl_experiment.model.params)
automl_settings["estimator_list"] = ["large_xgb"]
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
2020-12-04 09:40:27 -08:00
print(automl_experiment.model)
automl_settings["estimator_list"] = ["large_lgbm"]
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
print(automl_experiment.model)
def test_fit_w_starting_point(self, as_frame=True, n_concurrent_trials=1):
automl = AutoML()
settings = {
"max_iter": 3,
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
if as_frame:
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl.fit(
X_train=X_train,
y_train=y_train,
n_concurrent_trials=n_concurrent_trials,
**settings
)
automl_val_accuracy = 1.0 - automl.best_loss
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
print(
"Training duration of best run: {0:.4g} s".format(
automl.best_config_train_time
)
)
starting_points = automl.best_config_per_estimator
print("starting_points", starting_points)
print("loss of the starting_points", automl.best_loss_per_estimator)
settings_resume = {
"time_budget": 2,
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris_resume.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
"log_type": "all",
"starting_points": starting_points,
}
new_automl = AutoML()
new_automl.fit(X_train=X_train, y_train=y_train, **settings_resume)
new_automl_val_accuracy = 1.0 - new_automl.best_loss
print("Best ML leaner:", new_automl.best_estimator)
print("Best hyperparmeter config:", new_automl.best_config)
print(
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
)
print(
"Training duration of best run: {0:.4g} s".format(
new_automl.best_config_train_time
)
)
def test_fit_w_starting_point_2(self, as_frame=True):
try:
import ray
self.test_fit_w_starting_points_list(as_frame, 2)
self.test_fit_w_starting_point(as_frame, 2)
except ImportError:
pass
def test_fit_w_starting_points_list(self, as_frame=True, n_concurrent_trials=1):
automl = AutoML()
settings = {
"max_iter": 3,
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_iris(return_X_y=True, as_frame=as_frame)
if as_frame:
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl.fit(
X_train=X_train,
y_train=y_train,
n_concurrent_trials=n_concurrent_trials,
**settings
)
automl_val_accuracy = 1.0 - automl.best_loss
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
print(
"Training duration of best run: {0:.4g} s".format(
automl.best_config_train_time
)
)
starting_points = {}
log_file_name = settings["log_file_name"]
with training_log_reader(log_file_name) as reader:
sample_size = 1000
for record in reader.records():
config = record.config
config["FLAML_sample_size"] = sample_size
sample_size += 1000
learner = record.learner
if learner not in starting_points:
starting_points[learner] = []
starting_points[learner].append(config)
max_iter = sum([len(s) for k, s in starting_points.items()])
settings_resume = {
"time_budget": 2,
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris_resume_all.log",
"log_training_metric": True,
"n_jobs": 1,
"max_iter": max_iter,
"model_history": True,
"log_type": "all",
"starting_points": starting_points,
"append_log": True,
}
new_automl = AutoML()
new_automl.fit(X_train=X_train, y_train=y_train, **settings_resume)
new_automl_val_accuracy = 1.0 - new_automl.best_loss
# print('Best ML leaner:', new_automl.best_estimator)
# print('Best hyperparmeter config:', new_automl.best_config)
print(
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
)
# print('Training duration of best run: {0:.4g} s'.format(new_automl_experiment.best_config_train_time))
2020-12-04 09:40:27 -08:00
if __name__ == "__main__":
unittest.main()