mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-10 00:36:06 +00:00
156 lines
4.8 KiB
Python
156 lines
4.8 KiB
Python
![]() |
from utils import get_toy_data_seqclassification, get_automl_settings
|
||
|
import sys
|
||
|
from flaml.default import portfolio
|
||
|
|
||
|
|
||
|
def pop_args(fit_kwargs):
|
||
|
fit_kwargs.pop("max_iter", None)
|
||
|
fit_kwargs.pop("use_ray", None)
|
||
|
fit_kwargs.pop("estimator_list", None)
|
||
|
fit_kwargs.pop("time_budget", None)
|
||
|
fit_kwargs.pop("log_file_name", None)
|
||
|
|
||
|
|
||
|
def test_build_portfolio(path="./test/nlp/default", strategy="greedy"):
|
||
|
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures.csv --task seq-classification --estimator transformer_ms --strategy {strategy}".split()
|
||
|
portfolio.main()
|
||
|
|
||
|
|
||
|
def test_starting_point_not_in_search_space():
|
||
|
from flaml import AutoML
|
||
|
|
||
|
"""
|
||
|
test starting_points located outside of the search space, and custom_hp is not set
|
||
|
"""
|
||
|
this_estimator_name = "transformer"
|
||
|
X_train, y_train, X_val, y_val, _ = get_toy_data_seqclassification()
|
||
|
|
||
|
automl = AutoML()
|
||
|
automl_settings = get_automl_settings(estimator_name=this_estimator_name)
|
||
|
|
||
|
automl_settings["starting_points"] = {
|
||
|
this_estimator_name: [{"learning_rate": 2e-3}]
|
||
|
}
|
||
|
|
||
|
automl.fit(X_train, y_train, **automl_settings)
|
||
|
assert (
|
||
|
automl._search_states[this_estimator_name].init_config["learning_rate"] != 2e-3
|
||
|
)
|
||
|
|
||
|
"""
|
||
|
test starting_points located outside of the search space, and custom_hp is set
|
||
|
"""
|
||
|
|
||
|
from flaml import tune
|
||
|
|
||
|
X_train, y_train, X_val, y_val, _ = get_toy_data_seqclassification()
|
||
|
|
||
|
this_estimator_name = "transformer_ms"
|
||
|
automl = AutoML()
|
||
|
automl_settings = get_automl_settings(estimator_name=this_estimator_name)
|
||
|
|
||
|
automl_settings["custom_hp"] = {
|
||
|
this_estimator_name: {
|
||
|
"model_path": {
|
||
|
"domain": "albert-base-v2",
|
||
|
},
|
||
|
"learning_rate": {
|
||
|
"domain": tune.choice([1e-4, 1e-5]),
|
||
|
},
|
||
|
}
|
||
|
}
|
||
|
automl_settings["starting_points"] = "data:test/nlp/default/"
|
||
|
del automl_settings["fit_kwargs_by_estimator"][this_estimator_name]["model_path"]
|
||
|
|
||
|
automl.fit(X_train, y_train, **automl_settings)
|
||
|
assert (
|
||
|
len(automl._search_states[this_estimator_name].init_config) == 0
|
||
|
) # check that init config is not updated, but search space is updated
|
||
|
assert (
|
||
|
automl._search_states[this_estimator_name].search_space["model_path"]
|
||
|
== "albert-base-v2"
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_points_to_evaluate():
|
||
|
from flaml import AutoML
|
||
|
|
||
|
X_train, y_train, X_val, y_val, _ = get_toy_data_seqclassification()
|
||
|
|
||
|
automl = AutoML()
|
||
|
automl_settings = get_automl_settings(estimator_name="transformer_ms")
|
||
|
|
||
|
automl_settings["estimator_list"] = ["transformer_ms"]
|
||
|
automl_settings["starting_points"] = "data"
|
||
|
|
||
|
del automl_settings["fit_kwargs_by_estimator"]["transformer_ms"]["model_path"]
|
||
|
|
||
|
automl.fit(X_train, y_train, **automl_settings)
|
||
|
|
||
|
|
||
|
# TODO: implement _test_zero_shot_model
|
||
|
def test_zero_shot_nomodel():
|
||
|
from flaml.default import preprocess_and_suggest_hyperparams
|
||
|
|
||
|
estimator_name = "transformer_ms"
|
||
|
|
||
|
location = "test/nlp/default"
|
||
|
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
|
||
|
|
||
|
automl_settings = get_automl_settings(estimator_name)
|
||
|
|
||
|
del automl_settings["fit_kwargs_by_estimator"][estimator_name]["model_path"]
|
||
|
|
||
|
(
|
||
|
hyperparams,
|
||
|
estimator_class,
|
||
|
X_train,
|
||
|
y_train,
|
||
|
_,
|
||
|
_,
|
||
|
) = preprocess_and_suggest_hyperparams(
|
||
|
"seq-classification", X_train, y_train, estimator_name, location=location
|
||
|
)
|
||
|
|
||
|
model = estimator_class(
|
||
|
**hyperparams
|
||
|
) # estimator_class is TransformersEstimatorModelSelection
|
||
|
|
||
|
fit_kwargs = automl_settings.pop("fit_kwargs_by_estimator", {}).get(estimator_name)
|
||
|
fit_kwargs.update(automl_settings)
|
||
|
pop_args(fit_kwargs)
|
||
|
model.fit(X_train, y_train, **fit_kwargs)
|
||
|
|
||
|
|
||
|
def test_build_error_portfolio(path="./test/nlp/default", strategy="greedy"):
|
||
|
import os
|
||
|
|
||
|
os.remove("./test/nlp/default/transformer_ms/seq-classification.json")
|
||
|
sys.argv = f"portfolio.py --output {path} --input {path} --metafeatures {path}/all/metafeatures_err.csv --task seq-classification --estimator transformer_ms --strategy {strategy}".split()
|
||
|
portfolio.main()
|
||
|
|
||
|
from flaml.default import preprocess_and_suggest_hyperparams
|
||
|
|
||
|
estimator_name = "transformer_ms"
|
||
|
|
||
|
location = "test/nlp/default"
|
||
|
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
|
||
|
|
||
|
automl_settings = get_automl_settings(estimator_name)
|
||
|
|
||
|
del automl_settings["fit_kwargs_by_estimator"][estimator_name]["model_path"]
|
||
|
|
||
|
try:
|
||
|
(
|
||
|
hyperparams,
|
||
|
estimator_class,
|
||
|
X_train,
|
||
|
y_train,
|
||
|
_,
|
||
|
_,
|
||
|
) = preprocess_and_suggest_hyperparams(
|
||
|
"seq-classification", X_train, y_train, estimator_name, location=location
|
||
|
)
|
||
|
except ValueError:
|
||
|
print("Feature not implemented")
|