1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks.
2. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code). Users can customize only when and what they need to, and leave the rest to the library.
3. It supports fast and economical automatic tuning, capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping. FLAML is powered by a new, [cost-effective
It automatically tunes the hyperparameters and selects the best model from default learners such as LightGBM, XGBoost, random forest etc. for the specified time budget 60 seconds. [Customizing](Use-Cases/task-oriented-automl#customize-automlfit) the optimization metrics, learners and search spaces etc. is very easy. For example,
FLAML offers a unique, seamless and effortless way to leverage AutoML for the commonly used classifiers and regressors such as LightGBM and XGBoost. For example, if you are using `lightgbm.LGBMClassifier` as your current learner, all you need to do is to replace `from lightgbm import LGBMClassifier` by:
Then, you can use it just like you use the original `LGMBClassifier`. Your other code can remain unchanged. When you call the `fit()` function from `flaml.default.LGBMClassifier`, it will automatically instantiate a good data-dependent hyperparameter configuration for your dataset, which is expected to work better than the default configuration.
* Understand the use cases for [Task-oriented AutoML](Use-Cases/task-oriented-automl), [Tune user-defined function](Use-Cases/Tune-User-Defined-Function) and [Zero-shot AutoML](Use-Cases/Zero-Shot-AutoML).
* Find [talks](https://www.youtube.com/channel/UCfU0zfFXHXdAd5x-WvFBk5A) and [tutorials](https://github.com/microsoft/FLAML/tree/tutorial/tutorial) about FLAML.
If you like our project, please give it a [star](https://github.com/microsoft/FLAML/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](Contribute).