141 lines
5.2 KiB
Python
Raw Normal View History

import unittest
from unittest.mock import MagicMock
import pytest
import autogen
Code executors (#1405) * code executor * test * revert to main conversable agent * prepare for pr * kernel * run open ai tests only when it's out of draft status * update workflow file * revert workflow changes * ipython executor * check kernel installed; fix tests * fix tests * fix tests * update system prompt * Update notebook, more tests * notebook * raise instead of return None * allow user provided code executor. * fixing types * wip * refactoring * polishing * fixed failing tests * resolved merge conflict * fixing failing test * wip * local command line executor and embedded ipython executor * revert notebook * fix format * fix merged error * fix lmm test * fix lmm test * move warning * name and description should be part of the agent protocol, reset is not as it is only used for ConversableAgent; removing accidentally commited file * version for dependency * Update autogen/agentchat/conversable_agent.py Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com> * ordering of protocol * description * fix tests * make ipython executor dependency optional * update document optional dependencies * Remove exclude from Agent protocol * Make ConversableAgent consistent with Agent * fix tests * add doc string * add doc string * fix notebook * fix interface * merge and update agents * disable config usage in reply function * description field setter * customize system message update * update doc --------- Co-authored-by: Davor Runje <davor@airt.ai> Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com> Co-authored-by: Aaron <aaronlaptop12@hotmail.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2024-02-09 20:52:16 -08:00
from autogen.agentchat.conversable_agent import ConversableAgent
2024-02-14 10:51:38 -08:00
from conftest import MOCK_OPEN_AI_API_KEY
try:
from autogen.agentchat.contrib.img_utils import get_pil_image
from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent
except ImportError:
skip = True
else:
skip = False
base64_encoded_image = (
""
"//8/w38GIAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg=="
)
if skip:
pil_image = None
else:
pil_image = get_pil_image(base64_encoded_image)
@pytest.mark.skipif(skip, reason="dependency is not installed")
class TestMultimodalConversableAgent(unittest.TestCase):
def setUp(self):
self.agent = MultimodalConversableAgent(
name="TestAgent",
llm_config={
"timeout": 600,
"seed": 42,
2024-02-14 10:51:38 -08:00
"config_list": [{"model": "gpt-4-vision-preview", "api_key": MOCK_OPEN_AI_API_KEY}],
},
)
def test_system_message(self):
# Test default system message
self.assertEqual(
self.agent.system_message,
[
{
"type": "text",
"text": "You are a helpful AI assistant.",
}
],
)
# Test updating system message
new_message = f"We will discuss <img {base64_encoded_image}> in this conversation."
self.agent.update_system_message(new_message)
self.assertEqual(
self.agent.system_message,
[
{"type": "text", "text": "We will discuss "},
{"type": "image_url", "image_url": {"url": pil_image}},
{"type": "text", "text": " in this conversation."},
],
)
def test_message_to_dict(self):
# Test string message
message_str = "Hello"
expected_dict = {"content": [{"type": "text", "text": "Hello"}]}
self.assertDictEqual(self.agent._message_to_dict(message_str), expected_dict)
# Test list message
message_list = [{"type": "text", "text": "Hello"}]
expected_dict = {"content": message_list}
self.assertDictEqual(self.agent._message_to_dict(message_list), expected_dict)
# Test dictionary message
message_dict = {"content": [{"type": "text", "text": "Hello"}]}
self.assertDictEqual(self.agent._message_to_dict(message_dict), message_dict)
def test_print_received_message(self):
Code executors (#1405) * code executor * test * revert to main conversable agent * prepare for pr * kernel * run open ai tests only when it's out of draft status * update workflow file * revert workflow changes * ipython executor * check kernel installed; fix tests * fix tests * fix tests * update system prompt * Update notebook, more tests * notebook * raise instead of return None * allow user provided code executor. * fixing types * wip * refactoring * polishing * fixed failing tests * resolved merge conflict * fixing failing test * wip * local command line executor and embedded ipython executor * revert notebook * fix format * fix merged error * fix lmm test * fix lmm test * move warning * name and description should be part of the agent protocol, reset is not as it is only used for ConversableAgent; removing accidentally commited file * version for dependency * Update autogen/agentchat/conversable_agent.py Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com> * ordering of protocol * description * fix tests * make ipython executor dependency optional * update document optional dependencies * Remove exclude from Agent protocol * Make ConversableAgent consistent with Agent * fix tests * add doc string * add doc string * fix notebook * fix interface * merge and update agents * disable config usage in reply function * description field setter * customize system message update * update doc --------- Co-authored-by: Davor Runje <davor@airt.ai> Co-authored-by: Jack Gerrits <jackgerrits@users.noreply.github.com> Co-authored-by: Aaron <aaronlaptop12@hotmail.com> Co-authored-by: Chi Wang <wang.chi@microsoft.com>
2024-02-09 20:52:16 -08:00
sender = ConversableAgent(name="SenderAgent", llm_config=False, code_execution_config=False)
message_str = "Hello"
self.agent._print_received_message = MagicMock() # Mocking print method to avoid actual print
self.agent._print_received_message(message_str, sender)
self.agent._print_received_message.assert_called_with(message_str, sender)
@pytest.mark.skipif(skip, reason="Dependency not installed")
def test_group_chat_with_lmm():
"""
Tests the group chat functionality with two MultimodalConversable Agents.
Verifies that the chat is correctly limited by the max_round parameter.
Each agent is set to describe an image in a unique style, but the chat should not exceed the specified max_rounds.
"""
# Configuration parameters
max_round = 5
max_consecutive_auto_reply = 10
llm_config = False
# Creating two MultimodalConversable Agents with different descriptive styles
agent1 = MultimodalConversableAgent(
name="image-explainer-1",
max_consecutive_auto_reply=max_consecutive_auto_reply,
llm_config=llm_config,
system_message="Your image description is poetic and engaging.",
)
agent2 = MultimodalConversableAgent(
name="image-explainer-2",
max_consecutive_auto_reply=max_consecutive_auto_reply,
llm_config=llm_config,
system_message="Your image description is factual and to the point.",
)
# Creating a user proxy agent for initiating the group chat
user_proxy = autogen.UserProxyAgent(
name="User_proxy",
system_message="Ask both image explainer 1 and 2 for their description.",
human_input_mode="NEVER", # Options: 'ALWAYS' or 'NEVER'
max_consecutive_auto_reply=max_consecutive_auto_reply,
)
# Setting up the group chat
groupchat = autogen.GroupChat(agents=[agent1, agent2, user_proxy], messages=[], max_round=max_round)
group_chat_manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)
# Initiating the group chat and observing the number of rounds
user_proxy.initiate_chat(group_chat_manager, message=f"What do you see? <img {base64_encoded_image}>")
# Assertions to check if the number of rounds does not exceed max_round
assert all(len(arr) <= max_round for arr in agent1._oai_messages.values()), "Agent 1 exceeded max rounds"
assert all(len(arr) <= max_round for arr in agent2._oai_messages.values()), "Agent 2 exceeded max rounds"
assert all(len(arr) <= max_round for arr in user_proxy._oai_messages.values()), "User proxy exceeded max rounds"
if __name__ == "__main__":
unittest.main()