2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Copyright (c) 2020-2021 Microsoft Corporation. All rights reserved. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Licensed under the MIT License.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# AutoML with FLAML Library\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 1. Introduction\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "to use and extend, such as adding new learners. FLAML can \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- serve as an economical AutoML engine,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be used as a fast hyperparameter tuning tool, or \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "   tuning tasks.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML requires `Python>=3.6`. To run this notebook example, please install flaml with the `notebook` option:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```bash\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pip install flaml[notebook]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": null,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "!pip install flaml[notebook];"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 2. Classification Example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Load data and preprocess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "load dataset from ./openml_ds1169.pkl\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Dataset name: airlines\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_train.shape: (404537, 7), y_train.shape: (404537,);\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_test.shape: (134846, 7), y_test.shape: (134846,)\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import load_openml_dataset\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir='./')"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Run FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' import AutoML class from flaml package '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml import AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"time_budget\": 300,  # total running time in seconds\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc','f1','log_loss','mae','mse','r2']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'classification',  # task type    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "}"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:30] {890} INFO - Evaluation method: holdout\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {596} INFO - Using StratifiedKFold\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {911} INFO - Minimizing error metric: 1-accuracy\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {929} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'catboost', 'xgboost', 'extra_tree', 'lrl1']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 0, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.6s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 1, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.6s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 2, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.7s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 3, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.7s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 4, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.8s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 5, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 0.9s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 6, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 1.0s,\tbest lgbm's error=0.3765,\tbest lgbm's error=0.3765\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 7, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 1.1s,\tbest xgboost's error=0.3787,\tbest lgbm's error=0.3765\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 8, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {1141} INFO -  at 1.3s,\tbest lgbm's error=0.3686,\tbest lgbm's error=0.3686\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:31] {993} INFO - iteration 9, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 1.4s,\tbest xgboost's error=0.3768,\tbest lgbm's error=0.3686\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 10, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 1.5s,\tbest lgbm's error=0.3686,\tbest lgbm's error=0.3686\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 11, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 1.7s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 12, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 1.8s,\tbest extra_tree's error=0.4032,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 13, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 2.0s,\tbest extra_tree's error=0.4032,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 14, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {1141} INFO -  at 2.1s,\tbest extra_tree's error=0.4032,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:32] {993} INFO - iteration 15, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {1141} INFO -  at 2.4s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {993} INFO - iteration 16, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {1141} INFO -  at 2.7s,\tbest extra_tree's error=0.3972,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {993} INFO - iteration 17, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {1141} INFO -  at 2.8s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {993} INFO - iteration 18, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {1141} INFO -  at 3.1s,\tbest rf's error=0.4011,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {993} INFO - iteration 19, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {1141} INFO -  at 3.3s,\tbest rf's error=0.3994,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:33] {993} INFO - iteration 20, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {1141} INFO -  at 3.7s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {993} INFO - iteration 21, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {1141} INFO -  at 3.7s,\tbest xgboost's error=0.3765,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {993} INFO - iteration 22, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {1141} INFO -  at 4.0s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {993} INFO - iteration 23, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {1141} INFO -  at 4.3s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:34] {993} INFO - iteration 24, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {1141} INFO -  at 4.7s,\tbest rf's error=0.3990,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {993} INFO - iteration 25, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {1141} INFO -  at 5.0s,\tbest extra_tree's error=0.3972,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {993} INFO - iteration 26, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {1141} INFO -  at 5.2s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:35] {993} INFO - iteration 27, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {1141} INFO -  at 5.6s,\tbest lgbm's error=0.3518,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {993} INFO - iteration 28, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {1141} INFO -  at 5.7s,\tbest xgboost's error=0.3746,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {993} INFO - iteration 29, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {1141} INFO -  at 5.7s,\tbest xgboost's error=0.3689,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {993} INFO - iteration 30, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {1141} INFO -  at 6.0s,\tbest lgbm's error=0.3518,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:36] {993} INFO - iteration 31, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {1141} INFO -  at 6.7s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {993} INFO - iteration 32, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {1141} INFO -  at 7.0s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {993} INFO - iteration 33, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {1141} INFO -  at 7.1s,\tbest xgboost's error=0.3689,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:37] {993} INFO - iteration 34, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {1141} INFO -  at 10.4s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {993} INFO - iteration 35, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {1141} INFO -  at 10.5s,\tbest xgboost's error=0.3617,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {993} INFO - iteration 36, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {1141} INFO -  at 10.6s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:41] {993} INFO - iteration 37, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:42] {1141} INFO -  at 11.4s,\tbest catboost's error=0.3600,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:42] {993} INFO - iteration 38, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:42] {1141} INFO -  at 12.2s,\tbest catboost's error=0.3600,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:42] {993} INFO - iteration 39, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:43] {1141} INFO -  at 12.6s,\tbest catboost's error=0.3599,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:43] {993} INFO - iteration 40, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:46] {1141} INFO -  at 16.1s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:46] {993} INFO - iteration 41, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:46] {1141} INFO -  at 16.2s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:46] {993} INFO - iteration 42, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:47] {1141} INFO -  at 16.6s,\tbest extra_tree's error=0.3972,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:47] {993} INFO - iteration 43, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {1141} INFO -  at 19.7s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {993} INFO - iteration 44, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {1141} INFO -  at 19.8s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {993} INFO - iteration 45, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {1141} INFO -  at 20.1s,\tbest extra_tree's error=0.3972,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {993} INFO - iteration 46, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {1141} INFO -  at 20.2s,\tbest xgboost's error=0.3595,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:50] {993} INFO - iteration 47, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:55] {1141} INFO -  at 24.4s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:55] {993} INFO - iteration 48, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:55] {1141} INFO -  at 24.5s,\tbest xgboost's error=0.3595,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:55] {993} INFO - iteration 49, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:57] {1141} INFO -  at 26.7s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:57] {993} INFO - iteration 50, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:57] {1141} INFO -  at 27.0s,\tbest rf's error=0.3964,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:21:57] {993} INFO - iteration 51, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:00] {1141} INFO -  at 29.6s,\tbest extra_tree's error=0.3860,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:00] {993} INFO - iteration 52, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:05] {1141} INFO -  at 34.7s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:05] {993} INFO - iteration 53, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:05] {1141} INFO -  at 34.9s,\tbest rf's error=0.3964,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:05] {993} INFO - iteration 54, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:07] {1141} INFO -  at 36.5s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:07] {993} INFO - iteration 55, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:16] {1141} INFO -  at 46.3s,\tbest lgbm's error=0.3295,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:16] {993} INFO - iteration 56, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:17] {1141} INFO -  at 46.5s,\tbest xgboost's error=0.3590,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:17] {993} INFO - iteration 57, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {1141} INFO -  at 54.8s,\tbest lgbm's error=0.3295,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {993} INFO - iteration 58, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {1141} INFO -  at 55.0s,\tbest rf's error=0.3964,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {993} INFO - iteration 59, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {1141} INFO -  at 55.1s,\tbest xgboost's error=0.3590,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:25] {993} INFO - iteration 60, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:39] {1141} INFO -  at 68.4s,\tbest lgbm's error=0.3295,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:39] {993} INFO - iteration 61, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:39] {1141} INFO -  at 68.7s,\tbest xgboost's error=0.3573,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:39] {993} INFO - iteration 62, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:42] {1141} INFO -  at 71.8s,\tbest lgbm's error=0.3295,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:42] {993} INFO - iteration 63, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:42] {1141} INFO -  at 72.1s,\tbest xgboost's error=0.3573,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:42] {993} INFO - iteration 64, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:43] {1141} INFO -  at 72.6s,\tbest xgboost's error=0.3573,\tbest lgbm's error=0.3295\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:22:43] {993} INFO - iteration 65, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {1141} INFO -  at 111.8s,\tbest lgbm's error=0.3255,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {993} INFO - iteration 66, current learner lrl1\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "No init config given to FLOW2. Using random initial config.For cost-frugal search, consider providing init values for cost-related hps via 'init_config'.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  warnings.warn(\"The max_iter was reached which means \"\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {1141} INFO -  at 112.0s,\tbest lrl1's error=0.4339,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {993} INFO - iteration 67, current learner lrl1\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  warnings.warn(\"The max_iter was reached which means \"\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {1141} INFO -  at 112.3s,\tbest lrl1's error=0.4338,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:22] {993} INFO - iteration 68, current learner extra_tree\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:28] {1141} INFO -  at 117.6s,\tbest extra_tree's error=0.3835,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:28] {993} INFO - iteration 69, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:28] {1141} INFO -  at 117.7s,\tbest xgboost's error=0.3573,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:23:28] {993} INFO - iteration 70, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:50] {1141} INFO -  at 200.2s,\tbest lgbm's error=0.3255,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:50] {993} INFO - iteration 71, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:52] {1141} INFO -  at 201.6s,\tbest xgboost's error=0.3569,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:52] {993} INFO - iteration 72, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:52] {1141} INFO -  at 202.0s,\tbest xgboost's error=0.3569,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:24:52] {993} INFO - iteration 73, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:25:32] {1141} INFO -  at 242.0s,\tbest lgbm's error=0.3255,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:06] {1164} INFO - retrain lgbm for 34.1s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:06] {993} INFO - iteration 74, current learner lrl1\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  warnings.warn(\"The max_iter was reached which means \"\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:06] {1141} INFO -  at 276.4s,\tbest lrl1's error=0.4338,\tbest lgbm's error=0.3255\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:40] {1164} INFO - retrain lrl1 for 33.8s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:40] {1187} INFO - selected model: LGBMClassifier(colsample_bytree=0.6957494744503872,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               learning_rate=0.03736015062362056, max_bin=127,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               min_child_samples=51, n_estimators=1254, num_leaves=199,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               objective='binary', reg_alpha=0.06292808836994221,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               reg_lambda=1.7855390807403162, subsample=0.9807570637220066)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:26:40] {944} INFO - fit succeeded\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "'''The main flaml automl API'''\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "automl.fit(X_train=X_train, y_train=y_train, **settings)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Best model and metric"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Best ML leaner: lgbm\nBest hyperparmeter config: {'n_estimators': 1254.0, 'num_leaves': 199.0, 'min_child_samples': 51.0, 'learning_rate': 0.03736015062362056, 'subsample': 0.9807570637220066, 'log_max_bin': 7.0, 'colsample_bytree': 0.6957494744503872, 'reg_alpha': 0.06292808836994221, 'reg_lambda': 1.7855390807403162, 'FLAML_sample_size': 364083}\nBest accuracy on validation data: 0.6745\nTraining duration of best run: 39.17 s\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' retrieve best config and best learner'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best ML leaner:', automl.best_estimator)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "execute_result",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "LGBMClassifier(colsample_bytree=0.6957494744503872,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "               learning_rate=0.03736015062362056, max_bin=127,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "               min_child_samples=51, n_estimators=1254, num_leaves=199,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "               objective='binary', reg_alpha=0.06292808836994221,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "               reg_lambda=1.7855390807403162, subsample=0.9807570637220066)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "execution_count": 6
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.model"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "''' pickle and save the automl object '''\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "import pickle\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "with open('automl.pkl', 'wb') as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 8,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Predicted labels [1 0 1 ... 1 0 0]\nTrue labels [0 0 0 ... 0 1 0]\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute predictions of testing dataset ''' \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = automl.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('True labels', y_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred_proba = automl.predict_proba(X_test)[:,1]"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 9,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "accuracy = 0.6720406982780357\nroc_auc = 0.7265069475647942\nlog_loss = 0.6023913941397441\nf1 = 0.5918638561777844\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute different metric values on testing dataset'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('f1', '=', 1 - sklearn_metric_loss_score('f1', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "See Section 4 for an accuracy comparison with default LightGBM and XGBoost.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Log history"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 10,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 10000, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0, 'FLAML_sample_size': 10000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0, 'FLAML_sample_size': 10000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0, 'FLAML_sample_size': 40000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.1, 'subsample': 1.0, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0, 'FLAML_sample_size': 40000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 8.0, 'num_leaves': 4.0, 'min_child_samples': 26.0, 'learning_rate': 0.25676103984424165, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.8499027725496043, 'reg_alpha': 0.0015851927568202393, 'reg_lambda': 4.468020088227013, 'FLAML_sample_size': 40000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 8.0, 'num_leaves': 4.0, 'min_child_samples': 26.0, 'learning_rate': 0.25676103984424165, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.8499027725496043, 'reg_alpha': 0.0015851927568202393, 'reg_lambda': 4.468020088227013, 'FLAML_sample_size': 40000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 8.0, 'num_leaves': 12.0, 'min_child_samples': 30.0, 'learning_rate': 0.3127155723538002, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.7967145599266738, 'reg_alpha': 0.040774029561503077, 'reg_lambda': 22.553195483489322, 'FLAML_sample_size': 40000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 8.0, 'num_leaves': 12.0, 'min_child_samples': 30.0, 'learning_rate': 0.3127155723538002, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.7967145599266738, 'reg_alpha': 0.040774029561503077, 'reg_lambda': 22.553195483489322, 'FLAML_sample_size': 40000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 16.0, 'num_leaves': 17.0, 'min_child_samples': 53.0, 'learning_rate': 0.20056162642458597, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.6980216487058154, 'reg_alpha': 0.014469098513013432, 'reg_lambda': 7.806208895457607, 'FLAML_sample_size': 40000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 16.0, 'num_leaves': 17.0, 'min_child_samples': 53.0, 'learning_rate': 0.20056162642458597, 'subsample': 1.0, 'log_max_bin': 7.0, 'colsample_bytree': 0.6980216487058154, 'reg_alpha': 0.014469098513013432, 'reg_lambda': 7.806208895457607, 'FLAML_sample_size': 40000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 29.0, 'num_leaves': 30.0, 'min_child_samples': 27.0, 'learning_rate': 0.3345600006903613, 'subsample': 1.0, 'log_max_bin': 6.0, 'colsample_bytree': 0.6138481769580465, 'reg_alpha': 0.02608844295136239, 'reg_lambda': 4.068656226566239, 'FLAML_sample_size': 40000}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 29.0, 'num_leaves': 30.0, 'min_child_samples': 27.0, 'learning_rate': 0.3345600006903613, 'subsample': 1.0, 'log_max_bin': 6.0, 'colsample_bytree': 0.6138481769580465, 'reg_alpha': 0.02608844295136239, 'reg_lambda': 4.068656226566239, 'FLAML_sample_size': 40000}}\n{'Current Learner': 'lgbm', 'Current Sample': 40000, 'Current Hyper-parameters': {'n_estimators': 63.0, 'num_leaves': 69.0, 'min_child_samples': 24.0, 'learning_rate'
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import get_output_from_log\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "time_history, best_valid_loss_history, valid_loss_history, config_history, train_loss_history = \\\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    get_output_from_log(filename=settings['log_file_name'], time_budget=60)\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "for config in config_history:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    print(config)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 11,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "display_data",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": "<Figure size 432x288 with 1 Axes>",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"277.314375pt\" version=\"1.1\" viewBox=\"0 0 392.14375 277.314375\" width=\"392.14375pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n  <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n  </style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 277.314375 \nL 392.14375 277.314375 \nL 392.14375 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 50.14375 239.758125 \nL 384.94375 239.758125 \nL 384.94375 22.318125 \nL 50.14375 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g id=\"PathCollection_1\">\n    <defs>\n     <path d=\"M 0 3 \nC 0.795609 3 1.55874 2.683901 2.12132 2.12132 \nC 2.683901 1.55874 3 0.795609 3 0 \nC 3 -0.795609 2.683901 -1.55874 2.12132 -2.12132 \nC 1.55874 -2.683901 0.795609 -3 0 -3 \nC -0.795609 -3 -1.55874 -2.683901 -2.12132 -2.12132 \nC -2.683901 -1.55874 -3 -0.795609 -3 0 \nC -3 0.795609 -2.683901 1.55874 -2.12132 2.12132 \nC -1.55874 2.683901 -0.795609 3 0 3 \nz\n\" id=\"m1db7e4d9cc\" style=\"stroke:#1f77b4;\"/>\n    </defs>\n    <g clip-path=\"url(#pf9402e8909)\">\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"65.361932\" xlink:href=\"#m1db7e4d9cc\" y=\"229.874489\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"68.262524\" xlink:href=\"#m1db7e4d9cc\" y=\"225.209047\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"70.415595\" xlink:href=\"#m1db7e4d9cc\" y=\"192.550957\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"73.066061\" xlink:href=\"#m1db7e4d9cc\" y=\"161.819897\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"85.83267\" xlink:href=\"#m1db7e4d9cc\" y=\"158.777217\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"98.834719\" xlink:href=\"#m1db7e4d9cc\" y=\"123.684984\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"106.165799\" xlink:href=\"#m1db7e4d9cc\" y=\"117.80247\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"168.554519\" xlink:href=\"#m1db7e4d9cc\" y=\"86.260029\"/>\n     <use style=\"fill:#1f77b4;stroke:#1f77b4;\" x=\"369.725568\" xlink:href=\"#m1db7e4d9cc\" y=\"32.201761\"/>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"mb42fecc3dd\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"61.54531\" xlink:href=\"#mb42fecc3dd\" y=\"239.758125\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <defs>\n       <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n      </defs>\n      <g transform=\"translate(58.36406 254.356562)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"128.040424\" xlink:href=\"#mb42fecc3dd\" y=\"239.758125\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 10 -->\n      <defs>\n       <path d=\"M 12.40625 8.296875 \nL 28.5
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3df5hdVX3v8feHIcBYDAMm0GQCBC9JNBYkGlFEKnKliVYhUkSwPxRvQdvq1VKHklrR4uWqN2qrT9N6wWsRr/xM4xg1MlJFqAgkgWBChg6N4ddMkISYUYSRJJNv/9jrJDuHPZOTMHvOzDmf1/OcZ85ee+2zv7Mh8z1rrb3XUkRgZmZW7YB6B2BmZmOTE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIs/0g6TRJPfWOw6xMThA27kh6RNKb6xlDRPx7RMwq6/MlzZN0h6SnJW2WdLuks8o6n1kRJwizApJa6njuc4GbgWuBacBRwOXA2/fjsyTJ/85tv/h/HGsYkg6QdJmkn0naIukmSUfk9t8s6eeSfpm+nb8it+8aSf8sabmkZ4A3pZbKRyWtScfcKOmQVP90Sb2544esm/ZfKukJSRsl/amkkHR8we8g4AvApyLiKxHxy4jYGRG3R8RFqc4nJf3/3DHT0+cdmLZ/JOlKSXcCzwIdklZVnecvJS1L7w+W9DlJj0l6UtKXJbW+wP8c1gCcIKyRfAhYALwRmApsBRbn9n8PmAEcCdwHfKPq+HcDVwIvBn6cys4D5gPHAScC7x3m/IV1Jc0HLgHeDBwPnD7MZ8wCjgaWDFOnFn8MXEz2u3wZmCVpRm7/u4Hr0vvPADOBk1J87WQtFmtyThDWSD4AfCwieiPiOeCTwLmVb9YR8dWIeDq375WSDssd/62IuDN9Y/9NKvtSRGyMiF8A3yb7IzqUoeqeB/xLRKyLiGfTuYfykvTziVp/6SFck863IyJ+CXwLuAAgJYqXActSi+Vi4C8j4hcR8TTwv4HzX+D5rQE4QVgjORb4pqR+Sf3Ag8AgcJSkFkmfSd1PvwIeScdMyh3/eMFn/jz3/lng0GHOP1TdqVWfXXSeii3p55Rh6tSi+hzXkRIEWeuhMyWrycCLgHtz1+2WVG5NzgnCGsnjwFsioi33OiQi+sj+KJ5N1s1zGDA9HaPc8WVNbfwE2WBzxdHD1O0h+z3+YJg6z5D9Ua/47YI61b/LrcBkSSeRJYpK99JTwADwitw1OywihkuE1iScIGy8miDpkNzrQLK+9islHQsgabKks1P9FwPPkX1DfxFZN8pouQm4UNLLJb0I+PhQFSObf/8S4OOSLpQ0MQ2+v0HSVana/cDvSjomdZEt3FsAEbGd7M6oRcARZAmDiNgJXA38vaQjASS1S5q337+tNQwnCBuvlpN98628Pgl8EVgGfF/S08DdwGtT/WuBR4E+oDvtGxUR8T3gS8BtwPrcuZ8bov4S4F3A+4CNwJPA/yIbRyAibgVuBNYA9wLfqTGU68haUDdHxI5c+V9X4krdb/9GNlhuTU5eMMhsdEl6OfAAcHDVH2qzMcUtCLNRIOkd6XmDw4HPAt92crCxzgnCbHS8H9gE/Izszqo/q284ZnvnLiYzMyvkFoSZmRU6sN4BjJRJkybF9OnT6x2Gmdm4cu+99z4VEYUPRjZMgpg+fTqrVq3ae0UzM9tF0qND7XMXk5mZFXKCMDOzQk4QZmZWyAnCzMwKOUGYmVmhhrmLycys2XSu7mNRVw8b+weY2tZKx7xZLJjTPmKf7wRhZjYOda7uY+HStQxsHwSgr3+AhUvXAoxYkii1i0nSfEk9ktZLumyIOudJ6pa0TtJ1qexNku7PvX4jaUGZsZqZjSeLunp2JYeKge2DLOrqGbFzlNaCkNRCtmD8mUAvsFLSsojoztWZQbbYyakRsbWyYElE3EZaz1fSEWRz1X+/rFjNzMabjf0D+1S+P8psQZwMrI+IDRGxDbiBbMnHvIuAxRGxFSAiNhV8zrnA99L6uWZmBkxta92n8v1RZoJoZ8+F03tTWd5MYKakOyXdLWl+weecD1xfdAJJF0taJWnV5s2bRyRoM7PxoGPeLFontOxR1jqhhY55I7cYYL1vcz0QmAGcTraQ+tWS2io7JU0BTgC6ig6OiKsiYm5EzJ08uXCuKTOzhrRgTjufPucEDmrJ/oy3t7Xy6XNOGDd3MfUBR+e2p6WyvF7gnrSg+sOSHiJLGCvT/vOAb6b9ZmaWs2BOO9eveAyAG99/yoh/fpktiJXADEnHSTqIrKtoWVWdTrLWA5ImkXU5bcjtv4AhupfMzKxcpSWItN7uB8m6hx4EboqIdZKukHRWqtYFbJHUDdwGdETEFgBJ08laILeXFaOZmQ2t1AflImI5sLyq7PLc+wAuSa/qYx/h+YPaZmY2Suo9SG1mZmOUE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFnCDMzKyQE4SZmRVygjAzs0JOEGZmVsgJwszMCjlBmJlZIScIMzMr5ARhZmaFSk0QkuZL6pG0XtJlQ9Q5T1K3pHWSrsuVHyPp+5IeTPunlxmrmZnt6cCyPlhSC7AYOBPoBVZKWhYR3bk6M4CFwKkRsVXSkbmPuBa4MiJulXQosLOsWM3M7PnKbEGcDKyPiA0RsQ24ATi7qs5FwOKI2AoQEZsAJM0GDoyIW1P5ryPi2RJjNTOzKmUmiHbg8dx2byrLmwnMlHSnpLslzc+V90taKmm1pEWpRbIHSRdLWiVp1ebNm0v5JczMmlW9B6kPBGYApwMXAFdLakvlpwEfBV4DvBR4b/XBEXFVRMyNiLmTJ08erZjNzJpCmQmiDzg6tz0tleX1AssiYntEPAw8RJYweoH7U/fUDqATeFWJsZqZWZUyE8RKYIak4yQdBJwPLKuq00nWekDSJLKupQ3p2DZJlWbBGUA3ZmY2akpLEOmb/weBLuBB4KaIWCfpCklnpWpdwBZJ3cBtQEdEbImIQbLupR9IWgsIuLqsWM3M7PlKu80VICKWA8uryi7PvQ/gkvSqPvZW4MQy4zMzs6HVe5DazMzGKCcIMzMrtNcuJkkviYgtoxGMWV7n6j4WdfWwsX+AqW2tdMybxYI51Y/SmFlZamlB3C3pZklvlaTSIzIjSw4Ll66lr3+AAPr6B1i4dC2dq6vvlDazstQySD0TeDPwPuBLkm4CromIh0qNzJraoq4eBrYP7lE2sH2QS5es4foVj9UpKrOxp/uJXzF7ysRSPnuvLYjI3BoRF5DNnfQeYIWk2yWdUkpU1vQ29g8Ulm8b9JyNZnmzp0zk7JPK6XqtaQwC+CPgj4EngQ+RPfB2EnAzcFwpkVlTm9rWSl9Bkmhva+XG9/t7idloqGUM4i5gIrAgIn4/IpZGxI6IWAV8udzwrFl1zJtF64Q952dsndBCx7xZdYrIrPnUMgYxKz3Q9jwR8dkRjscMYNfdSpcuWcO2wZ20+y4ms1FXS4L4vqR3RkQ/gKTDgRsiYl65oVmzWzCnfdeAtLuVzEZfLV1MkyvJASAt7nPkMPXNzKwB1JIgBiUdU9mQdCxQ2OVkZmaNo5Yupo8BP5Z0O9msqqcBF5calZmZ1d1eE0RE3CLpVcDrUtFHIuKpcsMyM7N6q3W670FgE3AIMFsSEXFHeWGZmVm91fKg3J8CHyZbMvR+spbEXWSrvJmZWYOqZZD6w8BrgEcj4k3AHKB/+EPMzGy8qyVB/CYifgMg6eCI+A/Aj7OamTW4WsYgeiW1AZ3ArZK2Ao+WG5aZmdVbLXcxvSO9/aSk24DDgFtKjcrMzOpu2AQhqQVYFxEvA4iI20clKjMzq7thxyAiYhDoyT9JbWZmzaGWMYjDgXWSVgDPVAoj4qzSojIzs7qrJUF8vPQozMxszKllkNrjDmZmTaiWJ6mfZvf
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "needs_background": "light"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import matplotlib.pyplot as plt\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import numpy as np\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.title('Learning Curve')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.xlabel('Wall Clock Time (s)')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.ylabel('Validation Accuracy')\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "plt.scatter(time_history, 1 - np.array(valid_loss_history))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.step(time_history, 1 - np.array(best_valid_loss_history), where='post')\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "plt.show()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 3. Customized Learner"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Some experienced automl users may have a preferred model to tune or may already have a reasonably by-hand-tuned model before launching the automl experiment. They need to select optimal configurations for the customized model mixed with standard built-in learners. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML can easily incorporate customized/new learners (preferably with sklearn API) provided by users in a real-time manner, as demonstrated below."
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Example of Regularized Greedy Forest\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "[Regularized Greedy Forest](https://arxiv.org/abs/1109.0887) (RGF) is a machine learning method currently not included in FLAML. The RGF has many tuning parameters, the most critical of which are: `[max_leaf, n_iter, n_tree_search, opt_interval, min_samples_leaf]`. To run a customized/new learner, the user needs to provide the following information:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* an implementation of the customized/new learner\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* a list of hyperparameter names and types\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* rough ranges of hyperparameters (i.e., upper/lower bounds)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* choose initial value corresponding to low cost for cost-related hyperparameters (e.g., initial value for max_leaf and n_iter should be small)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In this example, the above information for RGF is wrapped in a python class called *MyRegularizedGreedyForest* that exposes the hyperparameters."
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 12,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' SKLearnEstimator is the super class for a sklearn learner '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.model import SKLearnEstimator\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml import tune\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from rgf.sklearn import RGFClassifier, RGFRegressor\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "class MyRegularizedGreedyForest(SKLearnEstimator):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    def __init__(self, task='binary:logistic', n_jobs=1, **params):\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        '''Constructor\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        Args:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            task: A string of the task type, one of\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "                'binary:logistic', 'multi:softmax', 'regression'\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            n_jobs: An integer of the number of parallel threads\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            params: A dictionary of the hyperparameter names and values\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        super().__init__(task, **params)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''task=regression for RGFRegressor; \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        binary:logistic and multiclass:softmax for RGFClassifier'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        if 'regression' in task:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            self.estimator_class = RGFRegressor\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        else:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            self.estimator_class = RGFClassifier\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # convert to int for integer hyperparameters\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.params = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            \"n_jobs\": n_jobs,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'max_leaf': int(params['max_leaf']),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'n_iter': int(params['n_iter']),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'n_tree_search': int(params['n_tree_search']),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'opt_interval': int(params['opt_interval']),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'learning_rate': params['learning_rate'],\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "            'min_samples_leaf': int(params['min_samples_leaf'])\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        }    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    @classmethod\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def search_space(cls, data_size, task):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''[required method] search space\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        Returns:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            A dictionary of the search space. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            Each key is the name of a hyperparameter, and value is a dict with\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "                its domain and init_value (optional), cat_hp_cost (optional) \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "                e.g., \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "                {'domain': tune.randint(lower=1, upper=10), 'init_value': 1}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        space = {        \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "            'max_leaf': {'domain': tune.qloguniform(lower=4, upper=data_size, q=1), 'init_value': 4, 'low_cost_init_value': 4},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'n_iter': {'domain': tune.qloguniform(lower=1, upper=data_size, q=1), 'init_value': 1, 'low_cost_init_value': 1},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'n_tree_search': {'domain': tune.qloguniform(lower=1, upper=32768, q=1), 'init_value': 1, 'low_cost_init_value': 1},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'opt_interval': {'domain': tune.qloguniform(lower=1, upper=10000, q=1), 'init_value': 100},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'learning_rate': {'domain': tune.loguniform(lower=0.01, upper=20.0)},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            'min_samples_leaf': {'domain': tune.qloguniform(lower=1, upper=20, q=1), 'init_value': 20},\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        }\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return space\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    @classmethod\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def size(cls, config):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''[optional method] memory size of the estimator in bytes\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        Args:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            config - the dict of the hyperparameter config\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        Returns:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            A float of the memory size required by the estimator to train the\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            given config\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        max_leaves = int(round(config['max_leaf']))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        n_estimators = int(round(config['n_iter']))\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    @classmethod\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def cost_relative2lgbm(cls):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''[optional method] relative cost compared to lightgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return 1.0\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Add Customized Learner and Run FLAML AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "After adding RGF into the list of learners, we run automl by tuning hyperpameters of RGF as well as the default learners. "
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 13,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "automl.add_learner(learner_name='RGF', learner_class=MyRegularizedGreedyForest)"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 14,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:27] {890} INFO - Evaluation method: holdout\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:27] {596} INFO - Using StratifiedKFold\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:27] {911} INFO - Minimizing error metric: 1-accuracy\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:27] {929} INFO - List of ML learners in AutoML Run: ['RGF', 'lgbm', 'rf', 'xgboost']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:27] {993} INFO - iteration 0, current learner RGF\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "/home/dmx/miniconda2/envs/blend/lib/python3.8/site-packages/rgf/utils.py:225: UserWarning: Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  warnings.warn(\"Cannot find FastRGF executable files. \"\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:30] {1141} INFO -  at 2.8s,\tbest RGF's error=0.3840,\tbest RGF's error=0.3840\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:30] {993} INFO - iteration 1, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:31] {1141} INFO -  at 4.1s,\tbest RGF's error=0.3840,\tbest RGF's error=0.3840\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:31] {993} INFO - iteration 2, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:32] {1141} INFO -  at 5.3s,\tbest RGF's error=0.3840,\tbest RGF's error=0.3840\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:32] {993} INFO - iteration 3, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {1141} INFO -  at 6.6s,\tbest RGF's error=0.3840,\tbest RGF's error=0.3840\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {993} INFO - iteration 4, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {1141} INFO -  at 6.7s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {993} INFO - iteration 5, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {1141} INFO -  at 6.8s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:33] {993} INFO - iteration 6, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 6.8s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 7, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 6.9s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 8, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 7.0s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 9, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 7.0s,\tbest lgbm's error=0.3777,\tbest lgbm's error=0.3777\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 10, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 7.2s,\tbest lgbm's error=0.3765,\tbest lgbm's error=0.3765\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 11, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 7.4s,\tbest lgbm's error=0.3686,\tbest lgbm's error=0.3686\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 12, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {1141} INFO -  at 7.5s,\tbest lgbm's error=0.3686,\tbest lgbm's error=0.3686\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:34] {993} INFO - iteration 13, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {1141} INFO -  at 7.8s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {993} INFO - iteration 14, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {1141} INFO -  at 8.0s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {993} INFO - iteration 15, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {1141} INFO -  at 8.1s,\tbest lgbm's error=0.3611,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:35] {993} INFO - iteration 16, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:36] {1141} INFO -  at 9.2s,\tbest RGF's error=0.3840,\tbest lgbm's error=0.3611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:36] {993} INFO - iteration 17, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:36] {1141} INFO -  at 9.5s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:36] {993} INFO - iteration 18, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {1141} INFO -  at 9.8s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {993} INFO - iteration 19, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {1141} INFO -  at 10.2s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {993} INFO - iteration 20, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {1141} INFO -  at 10.5s,\tbest lgbm's error=0.3603,\tbest lgbm's error=0.3603\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:37] {993} INFO - iteration 21, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:38] {1141} INFO -  at 10.8s,\tbest lgbm's error=0.3518,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:38] {993} INFO - iteration 22, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:38] {1141} INFO -  at 11.0s,\tbest lgbm's error=0.3518,\tbest lgbm's error=0.3518\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:38] {993} INFO - iteration 23, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:39] {1141} INFO -  at 11.8s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:39] {993} INFO - iteration 24, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:39] {1141} INFO -  at 12.1s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:39] {993} INFO - iteration 25, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:43] {1141} INFO -  at 16.1s,\tbest lgbm's error=0.3504,\tbest lgbm's error=0.3504\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:43] {993} INFO - iteration 26, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {1141} INFO -  at 21.0s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {993} INFO - iteration 27, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {1141} INFO -  at 21.0s,\tbest xgboost's error=0.3787,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {993} INFO - iteration 28, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {1141} INFO -  at 21.1s,\tbest xgboost's error=0.3768,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:48] {993} INFO - iteration 29, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:49] {1141} INFO -  at 22.3s,\tbest RGF's error=0.3762,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:49] {993} INFO - iteration 30, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:53] {1141} INFO -  at 25.9s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:53] {993} INFO - iteration 31, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {1141} INFO -  at 32.2s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {993} INFO - iteration 32, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {1141} INFO -  at 32.2s,\tbest xgboost's error=0.3765,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {993} INFO - iteration 33, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {1141} INFO -  at 32.4s,\tbest rf's error=0.4052,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {993} INFO - iteration 34, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {1141} INFO -  at 32.6s,\tbest rf's error=0.4052,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:27:59] {993} INFO - iteration 35, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 32.8s,\tbest rf's error=0.4012,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 36, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 32.9s,\tbest xgboost's error=0.3746,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 37, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 32.9s,\tbest xgboost's error=0.3689,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 38, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 33.0s,\tbest xgboost's error=0.3689,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 39, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 33.1s,\tbest xgboost's error=0.3617,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 40, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 33.2s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 41, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {1141} INFO -  at 33.3s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:00] {993} INFO - iteration 42, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {1141} INFO -  at 34.5s,\tbest RGF's error=0.3762,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {993} INFO - iteration 43, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {1141} INFO -  at 34.6s,\tbest xgboost's error=0.3610,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {993} INFO - iteration 44, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {1141} INFO -  at 34.7s,\tbest xgboost's error=0.3595,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:01] {993} INFO - iteration 45, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:02] {1141} INFO -  at 34.8s,\tbest xgboost's error=0.3595,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:02] {993} INFO - iteration 46, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:05] {1141} INFO -  at 37.8s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:05] {993} INFO - iteration 47, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:05] {1141} INFO -  at 38.0s,\tbest xgboost's error=0.3590,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:05] {993} INFO - iteration 48, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {1141} INFO -  at 45.9s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {993} INFO - iteration 49, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {1141} INFO -  at 46.1s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {993} INFO - iteration 50, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {1141} INFO -  at 46.3s,\tbest xgboost's error=0.3590,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {993} INFO - iteration 51, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {1141} INFO -  at 46.5s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {993} INFO - iteration 52, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {1141} INFO -  at 46.7s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:13] {993} INFO - iteration 53, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:15] {1141} INFO -  at 48.5s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:15] {993} INFO - iteration 54, current learner RGF\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:16] {1141} INFO -  at 49.6s,\tbest RGF's error=0.3762,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:16] {993} INFO - iteration 55, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:17] {1141} INFO -  at 49.8s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:17] {993} INFO - iteration 56, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:19] {1141} INFO -  at 52.4s,\tbest lgbm's error=0.3427,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:23] {1164} INFO - retrain lgbm for 3.4s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:23] {993} INFO - iteration 57, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:23] {1141} INFO -  at 56.0s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:26] {1164} INFO - retrain rf for 3.1s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:26] {993} INFO - iteration 58, current learner rf\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:26] {1141} INFO -  at 59.2s,\tbest rf's error=0.3926,\tbest lgbm's error=0.3427\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:27] {1164} INFO - retrain rf for 1.0s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:27] {1187} INFO - selected model: LGBMClassifier(colsample_bytree=0.5793842857429541,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               learning_rate=0.10431691413559704, max_bin=31,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               min_child_samples=24, n_estimators=63, num_leaves=69,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               objective='binary', reg_alpha=0.04072860923394475,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "               reg_lambda=1.6480344418782087, subsample=0.8895588746662894)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 05-01 16:28:27] {944} INFO - fit succeeded\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"time_budget\": 60,  # total running time in seconds\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    \"metric\": 'accuracy', \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"estimator_list\": ['RGF', 'lgbm', 'rf', 'xgboost'],  # list of ML learners\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'classification',  # task type    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'airlines_experiment_custom.log',  # flaml log file \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_training_metric\": True,  # whether to log training metric\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "'''The main flaml automl API'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.fit(X_train = X_train, y_train = y_train, **settings)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 4. Comparison with alternatives\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### FLAML's accuracy"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 15,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "flaml accuracy = 0.6720406982780357\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('flaml accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Default LightGBM"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 16,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from lightgbm import LGBMClassifier\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "lgbm = LGBMClassifier()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 17,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "execute_result",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "LGBMClassifier()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "execution_count": 17
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "lgbm.fit(X_train, y_train)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 18,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "default lgbm accuracy = 0.6602346380315323\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = lgbm.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('default lgbm accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Default XGBoost"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {}
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 19,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from xgboost import XGBClassifier\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "xgb = XGBClassifier()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 20,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "execute_result",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              importance_type='gain', interaction_constraints='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              learning_rate=0.300000012, max_delta_step=0, max_depth=6,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              min_child_weight=1, missing=nan, monotone_constraints='()',\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "              n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								       "              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              tree_method='exact', validate_parameters=1, verbosity=None)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "execution_count": 20
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "xgb.fit(X_train, y_train)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 21,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "default xgboost accuracy = 0.6676060098186078\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = xgb.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('default xgboost accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python3",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "display_name": "Python 3.8.0 64-bit",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "interpreter": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "hash": "0cfea3304185a9579d09e0953576b57c8581e46e6ebc6dfeb681bc5a511f7544"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   }
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.8.0-final"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 2
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								}