autogen/test/tune/test_searcher.py

127 lines
4.7 KiB
Python
Raw Normal View History

from flaml.searcher.blendsearch import CFO
import numpy as np
try:
from ray import __version__ as ray_version
assert ray_version >= '1.0.0'
from ray.tune import sample
except (ImportError, AssertionError):
from flaml.tune import sample
from flaml.searcher.suggestion import OptunaSearch, Searcher, ConcurrencyLimiter
from flaml.searcher.blendsearch import BlendSearch
def define_search_space(trial):
trial.suggest_float("a", 6, 8)
trial.suggest_float("b", 1e-4, 1e-2, log=True)
def test_searcher():
searcher = Searcher()
searcher = Searcher(metric=['m1', 'm2'], mode=['max', 'min'])
searcher.set_search_properties(None, None, None)
searcher.suggest = searcher.on_pause = searcher.on_unpause = lambda _: {}
searcher.on_trial_complete = lambda trial_id, result, error: None
searcher = ConcurrencyLimiter(searcher, max_concurrent=2, batch=True)
searcher.suggest("t1")
searcher.suggest("t2")
searcher.on_pause("t1")
searcher.on_unpause("t1")
searcher.suggest("t3")
searcher.on_trial_complete("t1", {})
searcher.on_trial_complete("t2", {})
searcher.set_state({})
print(searcher.get_state())
import optuna
config = {
"a": optuna.distributions.UniformDistribution(6, 8),
"b": optuna.distributions.LogUniformDistribution(1e-4, 1e-2),
}
searcher = OptunaSearch(
config, points_to_evaluate=[{"a": 6, "b": 1e-3}],
evaluated_rewards=[{'m': 2}], metric='m', mode='max'
)
config = {
"a": sample.uniform(6, 8),
"b": sample.loguniform(1e-4, 1e-2)
}
searcher = OptunaSearch(
config, points_to_evaluate=[{"a": 6, "b": 1e-3}],
evaluated_rewards=[{'m': 2}], metric='m', mode='max'
)
searcher = OptunaSearch(
define_search_space, points_to_evaluate=[{"a": 6, "b": 1e-3}],
# evaluated_rewards=[{'m': 2}], metric='m', mode='max'
mode='max'
)
searcher = OptunaSearch()
# searcher.set_search_properties('m', 'min', define_search_space)
searcher.set_search_properties('m', 'min', config)
searcher.suggest('t1')
searcher.on_trial_complete('t1', None, False)
searcher.suggest('t2')
searcher.on_trial_complete('t2', None, True)
searcher.suggest('t3')
searcher.on_trial_complete('t3', {'m': np.nan})
searcher.save('test/tune/optuna.pickle')
searcher.restore('test/tune/optuna.pickle')
searcher = BlendSearch(
metric="m",
global_search_alg=searcher, metric_constraints=[("c", "<", 1)])
searcher.set_search_properties(metric="m2", config=config)
searcher.set_search_properties(config={"time_budget_s": 0})
c = searcher.suggest('t1')
searcher.on_trial_complete("t1", {"config": c}, True)
c = searcher.suggest('t2')
searcher.on_trial_complete(
"t2", {"config": c, "m2": 1, "c": 2, "time_total_s": 1})
config1 = config.copy()
config1['_choice_'] = 0
searcher._expand_admissible_region(
lower={'root': [{'a': 0.5}, {'a': 0.4}]},
upper={'root': [{'a': 0.9}, {'a': 0.8}]},
space={'root': config1},
)
searcher = CFO(
metric='m', mode='min', space=config,
points_to_evaluate=[{'a': 7, 'b': 1e-3}, {'a': 6, 'b': 3e-4}],
evaluated_rewards=[1, 1])
searcher.suggest("t1")
searcher.suggest("t2")
searcher.on_trial_result('t3', {})
c = searcher.generate_parameters(1)
searcher.receive_trial_result(1, c, {'reward': 0})
searcher.update_search_space(
{
"a": {
"_value": [1, 2],
"_type": "choice",
},
"b": {
"_value": [1, 3],
"_type": "randint",
},
"c": {
"_value": [.1, 3],
"_type": "uniform",
},
"d": {
"_value": [2, 8, 2],
"_type": "quniform",
},
"e": {
"_value": [2, 8],
"_type": "loguniform",
},
"f": {
"_value": [2, 8, 2],
"_type": "qloguniform",
},
"g": {
"_value": [0, 2],
"_type": "normal",
},
"h": {
"_value": [0, 2, 2],
"_type": "qnormal",
},
}
)