2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Copyright (c) 2021. All rights reserved.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Contributed by: @bnriiitb\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Licensed under the MIT License."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Using AutoML in Sklearn Pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "This tutorial will help you understand how FLAML's AutoML can be used as a transformer in the Sklearn pipeline."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 1.Introduction\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### 1.1 FLAML - Fast and Lightweight AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models with low computational cost. It is fast and economical. The simple and lightweight design makes it easy  to use and extend, such as adding new learners. \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML can \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- serve as an economical AutoML engine,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be used as a fast hyperparameter tuning tool, or \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "   tuning tasks.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In this notebook, we use one real data example (binary classification) to showcase how to use FLAML library.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-21 18:59:07 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "FLAML requires `Python>=3.7`. To run this notebook example, please install flaml with the `notebook` option:\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "```bash\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pip install flaml[notebook]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### 1.2 Why are pipelines a silver bullet?\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In a typical machine learning workflow we have to apply all the transformations at least twice. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "1. During Training\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "2. During Inference\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Scikit-learn pipelines provide an easy to use inteface to automate ML workflows by allowing several transformers to be chained together. \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "The key benefits of using pipelines:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* Make ML workflows highly readable, enabling fast development and easy review\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* Help to build sequential and parallel processes\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* Allow hyperparameter tuning across the estimators\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* Easier to share and collaborate with multiple users (bug fixes, enhancements etc)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "* Enforce the implementation and order of steps"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "#### As FLAML's AutoML module can be used a transformer in the Sklearn's pipeline we can get all the benefits of pipeline and thereby write extremley clean, and resuable code."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 44,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-24 04:45:42 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "%pip install flaml[notebook]"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 2. Classification Example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Load data and preprocess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "download dataset from openml\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      "Dataset name: airlines\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_train.shape: (404537, 7), y_train.shape: (404537,);\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_test.shape: (134846, 7), y_test.shape: (134846,)\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import load_openml_dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "X_train, X_test, y_train, y_test = load_openml_dataset(\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    dataset_id=1169, data_dir='./', random_state=1234, dataset_format='array')"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "array([  12., 2648.,    4.,   15.,    4.,  450.,   67.], dtype=float32)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 2,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "X_train[0]"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 3. Create a Pipeline"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/html": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">AutoML</label><div class=\"sk-toggleable__content\"><pre>AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       ensemble=False, estimator_list='auto', eval_method='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       learner_selector='sample', log_file_name='', log_training_metric=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       metric_constraints=[], min_sample_size=10000, model_history=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       starting_points='static', task='classification', ...)</pre></div></div></div></div></div></div></div>"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 3,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from sklearn import set_config\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from sklearn.pipeline import Pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from sklearn.impute import SimpleImputer\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from sklearn.preprocessing import StandardScaler\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml import AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "set_config(display='diagram')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "imputer = SimpleImputer()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "standardizer = StandardScaler()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl_pipeline = Pipeline([\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    (\"imputuer\",imputer),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    (\"standardizer\", standardizer),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    (\"automl\", automl)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "])\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl_pipeline"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Run FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "automl_settings = {\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    \"time_budget\": 60,  # total running time in seconds\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 07:16:10 +09:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"metric\": 'accuracy',  # primary metrics can be chosen from: ['accuracy','roc_auc', 'roc_auc_ovr', 'roc_auc_ovo', 'f1','log_loss','mae','mse','r2']\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'classification',  # task type   \n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"estimator_list\": ['xgboost','catboost','lgbm'],\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'airlines_experiment.log',  # flaml log file\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pipeline_settings = {f\"automl__{key}\": value for key, value in automl_settings.items()}"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:43] {2390} INFO - task = classification\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:43] {2392} INFO - Data split method: stratified\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:43] {2396} INFO - Evaluation method: holdout\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {2465} INFO - Minimizing error metric: 1-accuracy\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {2605} INFO - List of ML learners in AutoML Run: ['xgboost', 'catboost', 'lgbm']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 0, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {3025} INFO - Estimated sufficient time budget=105341s. Estimated necessary time budget=116s.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {3072} INFO -  at 0.7s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 1, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {3072} INFO -  at 0.9s,\testimator lgbm's best error=0.3814,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:44] {2897} INFO - iteration 2, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.3s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 3, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.5s,\testimator lgbm's best error=0.3814,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 4, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 1.8s,\testimator xgboost's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 5, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {3072} INFO -  at 2.0s,\testimator lgbm's best error=0.3755,\tbest estimator xgboost's best error=0.3755\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:45] {2897} INFO - iteration 6, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:46] {3072} INFO -  at 2.3s,\testimator xgboost's best error=0.3724,\tbest estimator xgboost's best error=0.3724\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:46] {2897} INFO - iteration 7, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:46] {3072} INFO -  at 2.6s,\testimator xgboost's best error=0.3724,\tbest estimator xgboost's best error=0.3724\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:46] {2897} INFO - iteration 8, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:47] {3072} INFO -  at 3.1s,\testimator xgboost's best error=0.3657,\tbest estimator xgboost's best error=0.3657\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:47] {2897} INFO - iteration 9, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:47] {3072} INFO -  at 3.6s,\testimator xgboost's best error=0.3657,\tbest estimator xgboost's best error=0.3657\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:47] {2897} INFO - iteration 10, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:48] {3072} INFO -  at 4.8s,\testimator xgboost's best error=0.3592,\tbest estimator xgboost's best error=0.3592\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:48] {2897} INFO - iteration 11, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:50] {3072} INFO -  at 6.8s,\testimator xgboost's best error=0.3580,\tbest estimator xgboost's best error=0.3580\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:50] {2897} INFO - iteration 12, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:51] {3072} INFO -  at 8.1s,\testimator xgboost's best error=0.3580,\tbest estimator xgboost's best error=0.3580\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:51] {2897} INFO - iteration 13, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:52] {3072} INFO -  at 8.4s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:52] {2897} INFO - iteration 14, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:52] {3072} INFO -  at 8.7s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:52] {2897} INFO - iteration 15, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:53] {3072} INFO -  at 9.3s,\testimator lgbm's best error=0.3644,\tbest estimator xgboost's best error=0.3580\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:53] {2897} INFO - iteration 16, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 12.1s,\testimator xgboost's best error=0.3559,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 17, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 12.6s,\testimator lgbm's best error=0.3604,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 18, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {3072} INFO -  at 13.0s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:56] {2897} INFO - iteration 19, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:57] {3072} INFO -  at 13.7s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:57] {2897} INFO - iteration 20, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:57] {3072} INFO -  at 13.9s,\testimator catboost's best error=0.3615,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:57] {2897} INFO - iteration 21, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:59] {3072} INFO -  at 15.7s,\testimator xgboost's best error=0.3559,\tbest estimator xgboost's best error=0.3559\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:01:59] {2897} INFO - iteration 22, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:00] {3072} INFO -  at 16.5s,\testimator catboost's best error=0.3489,\tbest estimator catboost's best error=0.3489\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:00] {2897} INFO - iteration 23, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:02] {3072} INFO -  at 18.9s,\testimator catboost's best error=0.3489,\tbest estimator catboost's best error=0.3489\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:02] {2897} INFO - iteration 24, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:03] {3072} INFO -  at 19.2s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3489\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:03] {2897} INFO - iteration 25, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:03] {3072} INFO -  at 20.0s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:03] {2897} INFO - iteration 26, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.2s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 27, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.6s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 28, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {3072} INFO -  at 22.9s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:06] {2897} INFO - iteration 29, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:07] {3072} INFO -  at 23.6s,\testimator catboost's best error=0.3472,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:07] {2897} INFO - iteration 30, current learner xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:09] {3072} INFO -  at 25.4s,\testimator xgboost's best error=0.3548,\tbest estimator catboost's best error=0.3472\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:09] {2897} INFO - iteration 31, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:16] {3072} INFO -  at 32.3s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:16] {2897} INFO - iteration 32, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:16] {3072} INFO -  at 32.7s,\testimator lgbm's best error=0.3604,\tbest estimator catboost's best error=0.3388\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:16] {2897} INFO - iteration 33, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:22] {3072} INFO -  at 38.5s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:22] {2897} INFO - iteration 34, current learner catboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:43] {3072} INFO -  at 59.6s,\testimator catboost's best error=0.3388,\tbest estimator catboost's best error=0.3388\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:46] {3336} INFO - retrain catboost for 2.8s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:46] {3343} INFO - retrained model: <catboost.core.CatBoostClassifier object at 0x7fbeeb3859d0>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:46] {2636} INFO - fit succeeded\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 06-22 08:02:46] {2637} INFO - Time taken to find the best model: 32.311296463012695\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/html": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">AutoML</label><div class=\"sk-toggleable__content\"><pre>AutoML(append_log=False, auto_augment=True, custom_hp={}, early_stop=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       ensemble=False, estimator_list='auto', eval_method='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       fit_kwargs_by_estimator={}, hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       learner_selector='sample', log_file_name='', log_training_metric=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       log_type='better', max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       metric_constraints=[], min_sample_size=10000, model_history=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       n_concurrent_trials=1, n_jobs=-1, n_splits=5, pred_time_limit=inf,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       retrain_full=True, sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "       starting_points='static', task='classification', ...)</pre></div></div></div></div></div></div></div>"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "Pipeline(steps=[('imputuer', SimpleImputer()),\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                ('standardizer', StandardScaler()),\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "                ('automl',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                 AutoML(append_log=False, auto_augment=True, custom_hp={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        early_stop=False, ensemble=False, estimator_list='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        eval_method='auto', fit_kwargs_by_estimator={},\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        hpo_method='auto', keep_search_state=False,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        learner_selector='sample', log_file_name='',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        log_training_metric=False, log_type='better',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        max_iter=None, mem_thres=4294967296, metric='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        metric_constraints=[], min_sample_size=10000,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        model_history=False, n_concurrent_trials=1, n_jobs=-1,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        n_splits=5, pred_time_limit=inf, retrain_full=True,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        sample=True, split_ratio=0.1, split_type='auto',\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "                        starting_points='static', task='classification', ...))])"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "automl_pipeline.fit(X_train, y_train, **pipeline_settings)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 9,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best ML leaner: xgboost\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best hyperparmeter config: {'n_estimators': 63, 'max_leaves': 1797, 'min_child_weight': 0.07275175679381725, 'learning_rate': 0.06234183309508761, 'subsample': 0.9814772488195874, 'colsample_bylevel': 0.810466508891351, 'colsample_bytree': 0.8005378817953572, 'reg_alpha': 0.5768305704485758, 'reg_lambda': 6.867180836557797, 'FLAML_sample_size': 364083}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best accuracy on validation data: 0.6721\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Training duration of best run: 15.45 s\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Get the automl object from the pipeline\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = automl_pipeline.steps[2][1]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Get the best config and best learner\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best ML leaner:', automl.best_estimator)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "<flaml.model.XGBoostSklearnEstimator at 0x7f03a5eada00>"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.model"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 4. Persist the model binary file"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 11,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Persist the automl object as pickle file\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import pickle\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "with open('automl.pkl', 'wb') as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 12,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Predicted labels [0 1 1 ... 0 1 0]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "True labels [0 0 0 ... 1 0 1]\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Predicted probas  [0.3764987  0.6126277  0.699604   0.27359942 0.25294745]\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Performance inference on the testing dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = automl_pipeline.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('True labels', y_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred_proba = automl_pipeline.predict_proba(X_test)[:,1]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted probas ',y_pred_proba[:5])"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "display_name": "Python 3.9.12 64-bit",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "language": "python",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-23 05:44:14 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.9.12"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "vscode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "interpreter": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   }
							 
						 
					
						
							
								
									
										
										
										
											2021-08-12 06:16:46 +05:30 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 4
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								}