2021-12-03 12:45:16 -05:00
|
|
|
import sys
|
2021-11-18 09:39:45 -08:00
|
|
|
import pytest
|
2022-01-06 10:28:19 -08:00
|
|
|
import pickle
|
|
|
|
import shutil
|
2021-11-18 09:39:45 -08:00
|
|
|
|
|
|
|
|
2021-12-03 12:45:16 -05:00
|
|
|
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
|
2021-11-16 14:06:20 -05:00
|
|
|
def test_hf_data():
|
|
|
|
from flaml import AutoML
|
2021-12-03 12:45:16 -05:00
|
|
|
import requests
|
2021-11-16 14:06:20 -05:00
|
|
|
from datasets import load_dataset
|
|
|
|
|
2021-12-03 12:45:16 -05:00
|
|
|
try:
|
|
|
|
train_dataset = (
|
|
|
|
load_dataset("glue", "mrpc", split="train[:1%]").to_pandas().iloc[0:4]
|
|
|
|
)
|
|
|
|
dev_dataset = (
|
|
|
|
load_dataset("glue", "mrpc", split="train[1%:2%]").to_pandas().iloc[0:4]
|
|
|
|
)
|
|
|
|
test_dataset = (
|
|
|
|
load_dataset("glue", "mrpc", split="test[1%:2%]").to_pandas().iloc[0:4]
|
|
|
|
)
|
|
|
|
except requests.exceptions.ConnectionError:
|
|
|
|
return
|
2021-11-16 14:06:20 -05:00
|
|
|
|
|
|
|
custom_sent_keys = ["sentence1", "sentence2"]
|
|
|
|
label_key = "label"
|
|
|
|
|
|
|
|
X_train = train_dataset[custom_sent_keys]
|
|
|
|
y_train = train_dataset[label_key]
|
|
|
|
|
|
|
|
X_val = dev_dataset[custom_sent_keys]
|
|
|
|
y_val = dev_dataset[label_key]
|
|
|
|
|
|
|
|
X_test = test_dataset[custom_sent_keys]
|
|
|
|
|
|
|
|
automl = AutoML()
|
|
|
|
|
|
|
|
automl_settings = {
|
|
|
|
"gpu_per_trial": 0,
|
|
|
|
"max_iter": 3,
|
2021-11-18 09:39:45 -08:00
|
|
|
"time_budget": 5,
|
2021-11-16 14:06:20 -05:00
|
|
|
"task": "seq-classification",
|
|
|
|
"metric": "accuracy",
|
2021-11-18 09:39:45 -08:00
|
|
|
"log_file_name": "seqclass.log",
|
2021-11-16 14:06:20 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
automl_settings["custom_hpo_args"] = {
|
|
|
|
"model_path": "google/electra-small-discriminator",
|
2021-11-18 09:39:45 -08:00
|
|
|
"output_dir": "test/data/output/",
|
2021-11-16 14:06:20 -05:00
|
|
|
"ckpt_per_epoch": 5,
|
|
|
|
"fp16": False,
|
|
|
|
}
|
|
|
|
|
|
|
|
automl.fit(
|
|
|
|
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
|
|
|
)
|
2022-01-06 10:28:19 -08:00
|
|
|
|
2021-11-16 14:06:20 -05:00
|
|
|
automl = AutoML()
|
|
|
|
automl.retrain_from_log(
|
|
|
|
X_train=X_train,
|
|
|
|
y_train=y_train,
|
|
|
|
train_full=True,
|
|
|
|
record_id=0,
|
|
|
|
**automl_settings
|
|
|
|
)
|
2022-01-06 10:28:19 -08:00
|
|
|
with open("automl.pkl", "wb") as f:
|
|
|
|
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
|
|
|
with open("automl.pkl", "rb") as f:
|
|
|
|
automl = pickle.load(f)
|
|
|
|
shutil.rmtree("test/data/output/")
|
2021-11-16 14:06:20 -05:00
|
|
|
automl.predict(X_test)
|
|
|
|
automl.predict(["test test", "test test"])
|
|
|
|
automl.predict(
|
|
|
|
[
|
|
|
|
["test test", "test test"],
|
|
|
|
["test test", "test test"],
|
|
|
|
["test test", "test test"],
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2021-11-23 14:26:39 -05:00
|
|
|
automl.predict_proba(X_test)
|
|
|
|
print(automl.classes_)
|
|
|
|
|
2021-11-16 14:06:20 -05:00
|
|
|
|
|
|
|
def _test_custom_data():
|
|
|
|
from flaml import AutoML
|
2021-12-03 12:45:16 -05:00
|
|
|
import requests
|
2021-11-16 14:06:20 -05:00
|
|
|
import pandas as pd
|
|
|
|
|
2021-12-03 12:45:16 -05:00
|
|
|
try:
|
|
|
|
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
|
|
|
|
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
|
|
|
|
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
|
|
|
|
except requests.exceptions.ConnectionError:
|
|
|
|
pass
|
2021-11-16 14:06:20 -05:00
|
|
|
|
|
|
|
custom_sent_keys = ["#1 String", "#2 String"]
|
|
|
|
label_key = "Quality"
|
|
|
|
|
|
|
|
X_train = train_dataset[custom_sent_keys]
|
|
|
|
y_train = train_dataset[label_key]
|
|
|
|
|
|
|
|
X_val = dev_dataset[custom_sent_keys]
|
|
|
|
y_val = dev_dataset[label_key]
|
|
|
|
|
|
|
|
X_test = test_dataset[custom_sent_keys]
|
|
|
|
|
|
|
|
automl = AutoML()
|
|
|
|
|
|
|
|
automl_settings = {
|
|
|
|
"gpu_per_trial": 0,
|
2021-12-20 17:19:32 -05:00
|
|
|
"max_iter": 3,
|
|
|
|
"time_budget": 5,
|
2021-11-16 14:06:20 -05:00
|
|
|
"task": "seq-classification",
|
|
|
|
"metric": "accuracy",
|
|
|
|
}
|
|
|
|
|
|
|
|
automl_settings["custom_hpo_args"] = {
|
|
|
|
"model_path": "google/electra-small-discriminator",
|
|
|
|
"output_dir": "data/output/",
|
|
|
|
"ckpt_per_epoch": 1,
|
|
|
|
}
|
|
|
|
|
|
|
|
automl.fit(
|
|
|
|
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
|
|
|
|
)
|
|
|
|
automl.predict(X_test)
|
|
|
|
automl.predict(["test test"])
|
|
|
|
automl.predict(
|
|
|
|
[
|
|
|
|
["test test", "test test"],
|
|
|
|
["test test", "test test"],
|
|
|
|
["test test", "test test"],
|
|
|
|
]
|
|
|
|
)
|
2021-11-23 14:26:39 -05:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_hf_data()
|