2021-11-16 14:06:20 -05:00
|
|
|
import os
|
|
|
|
|
|
|
|
try:
|
|
|
|
from transformers import Trainer as TFTrainer
|
|
|
|
except ImportError:
|
|
|
|
TFTrainer = object
|
|
|
|
|
|
|
|
|
|
|
|
class TrainerForAuto(TFTrainer):
|
2021-11-18 09:39:45 -08:00
|
|
|
def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"):
|
|
|
|
"""Overriding transformers.Trainer.evaluate by saving metrics and checkpoint path"""
|
2021-11-16 14:06:20 -05:00
|
|
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
|
|
|
|
2021-11-18 09:39:45 -08:00
|
|
|
ckpt_dir = os.path.join(
|
|
|
|
self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
|
|
|
|
)
|
|
|
|
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
|
|
|
|
metrics = eval_dataset and super().evaluate(
|
|
|
|
eval_dataset, ignore_keys, metric_key_prefix
|
|
|
|
)
|
|
|
|
if metrics:
|
|
|
|
for key in list(metrics.keys()):
|
|
|
|
if key.startswith("eval_"):
|
|
|
|
metrics[key[5:]] = metrics.pop(key)
|
|
|
|
if hasattr(self, "ckpt_to_global_step"):
|
|
|
|
self.ckpt_to_global_step[ckpt_dir] = self.state.global_step
|
|
|
|
if metrics:
|
|
|
|
self.ckpt_to_metric[ckpt_dir] = metrics
|
|
|
|
else:
|
|
|
|
self.ckpt_to_global_step = {ckpt_dir: self.state.global_step}
|
|
|
|
self.ckpt_to_metric = {ckpt_dir: metrics} if metrics else {}
|