autogen/test/nlp/test_autohf_maxiter1.py

64 lines
1.5 KiB
Python
Raw Normal View History

import os
import pytest
@pytest.mark.skipif(os.name == "posix", reason="do not run on mac os")
def test_max_iter_1():
from flaml import AutoML
from datasets import load_dataset
train_dataset = load_dataset("glue", "mrpc", split="train").to_pandas().iloc[0:4]
dev_dataset = load_dataset("glue", "mrpc", split="train").to_pandas().iloc[0:4]
custom_sent_keys = ["sentence1", "sentence2"]
label_key = "label"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
X_val = dev_dataset[custom_sent_keys]
y_val = dev_dataset[label_key]
automl = AutoML()
def toy_metric(
X_test,
y_test,
estimator,
labels,
X_train,
y_train,
weight_test=None,
weight_train=None,
config=None,
groups_test=None,
groups_train=None,
):
return 0, {
"test_loss": 0,
"train_loss": 0,
"pred_time": 0,
}
automl_settings = {
"gpu_per_trial": 0,
"max_iter": 1,
"time_budget": 5,
"task": "seq-classification",
"metric": toy_metric,
"log_file_name": "seqclass.log",
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "data/output/",
"ckpt_per_epoch": 5,
"fp16": False,
}
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
)
del automl