When not using a docker container, we recommend using a virtual environment to install AutoGen. This will ensure that the dependencies for AutoGen are isolated from the rest of your system.
Another option is with `Conda`, Conda works better at solving dependency conflicts than pip. You can install it by following [this doc](https://docs.conda.io/projects/conda/en/stable/user-guide/install/index.html),
Another option is with `poetry`, which is a dependency manager for Python.
[Poetry](https://python-poetry.org/docs/) is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you. Poetry offers a lockfile to ensure repeatable installs, and can build your project for distribution.
You can install it by following [this doc](https://python-poetry.org/docs/#installation),
and then create a virtual environment as below:
```bash
poetry init
poetry shell
poetry add pyautogen
```
The following command will deactivate the current `poetry` environment:
openai v1 is a total rewrite of the library with many breaking changes. For example, the inference requires instantiating a client, instead of using a global class method.
Therefore, some changes are required for users of `pyautogen<0.2`.
-`api_base` -> `base_url`, `request_timeout` -> `timeout` in `llm_config` and `config_list`. `max_retry_period` and `retry_wait_time` are deprecated. `max_retries` can be set for each client.
-`seed` in autogen is renamed into `cache_seed` to accommodate the newly added `seed` param in openai chat completion api. `use_cache` is removed as a kwarg in `OpenAIWrapper.create()` for being automatically decided by `cache_seed`: int | None. The difference between autogen's `cache_seed` and openai's `seed` is that:
* autogen uses local disk cache to guarantee the exactly same output is produced for the same input and when cache is hit, no openai api call will be made.
* openai's `seed` is a best-effort deterministic sampling with no guarantee of determinism. When using openai's `seed` with `cache_seed` set to None, even for the same input, an openai api call will be made and there is no guarantee for getting exactly the same output.
For the best user experience and seamless code execution, we highly recommend using Docker with AutoGen. Docker is a containerization platform that simplifies the setup and execution of your code. Developing in a docker container, such as GitHub Codespace, also makes the development convenient.
When running AutoGen out of a docker container, to use docker for code execution, you also need to install the python package `docker`:
`pyautogen<0.2` offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. Please install with the [blendsearch] option to use it.
`pyautogen` supports retrieval-augmented generation tasks such as question answering and code generation with RAG agents. Please install with the [retrievechat] option to use it.
[Automated Code Generation and Question Answering with Retrieval Augmented Agents](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_RetrieveChat.ipynb)
[Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent)](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_RAG.ipynb)
[Automated Code Generation and Question Answering with Qdrant based Retrieval Augmented Agents](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_qdrant_RetrieveChat.ipynb)