autogen/test/automl/test_split.py

180 lines
5.0 KiB
Python
Raw Normal View History

2020-12-04 09:40:27 -08:00
from sklearn.datasets import fetch_openml
from flaml.automl import AutoML
from sklearn.model_selection import GroupKFold, train_test_split, KFold
2020-12-04 09:40:27 -08:00
from sklearn.metrics import accuracy_score
dataset = "credit-g"
2020-12-04 09:40:27 -08:00
def _test(split_type):
from sklearn.externals._arff import ArffException
2020-12-04 09:40:27 -08:00
automl = AutoML()
automl_settings = {
"time_budget": 2,
# "metric": 'accuracy',
"task": "classification",
2020-12-04 09:40:27 -08:00
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"log_training_metric": True,
"split_type": split_type,
}
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
if split_type != "time":
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42
)
else:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, shuffle=False
)
2020-12-04 09:40:27 -08:00
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
pred = automl.predict(X_test)
acc = accuracy_score(y_test, pred)
print(acc)
def _test_uniform():
2020-12-04 09:40:27 -08:00
_test(split_type="uniform")
def test_time():
_test(split_type="time")
def test_groups():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"eval_method": "cv",
"groups": np.random.randint(low=0, high=10, size=len(y)),
"estimator_list": ["lgbm", "rf", "xgboost", "kneighbor"],
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
automl_settings["eval_method"] = "holdout"
automl.fit(X, y, **automl_settings)
automl_settings["split_type"] = GroupKFold(n_splits=3)
try:
automl.fit(X, y, **automl_settings)
raise RuntimeError(
"GroupKFold object as split_type should fail when eval_method is holdout"
)
except AssertionError:
# eval_method must be 'auto' or 'cv' for custom data splitter.
pass
automl_settings["eval_method"] = "cv"
automl.fit(X, y, **automl_settings)
def test_rank():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
y = y.cat.codes
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "rank",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"eval_method": "cv",
"groups": np.array( # group labels
[0] * 200 + [1] * 200 + [2] * 200 + [3] * 200 + [4] * 100 + [5] * 100
),
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "rank",
"metric": "ndcg@5", # 5 can be replaced by any number
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"groups": [200] * 4 + [100] * 2, # alternative way: group counts
# "estimator_list": ['lgbm', 'xgboost'], # list of ML learners
"learner_selector": "roundrobin",
}
automl.fit(X, y, **automl_settings)
def test_object():
from sklearn.externals._arff import ArffException
try:
X, y = fetch_openml(name=dataset, return_X_y=True)
except (ArffException, ValueError):
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
import numpy as np
class TestKFold(KFold):
def __init__(self, n_splits):
self.n_splits = int(n_splits)
def split(self, X):
rng = np.random.default_rng()
train_num = int(len(X) * 0.8)
for _ in range(self.n_splits):
permu_idx = rng.permutation(len(X))
yield permu_idx[:train_num], permu_idx[train_num:]
def get_n_splits(self, X=None, y=None, groups=None):
return self.n_splits
automl = AutoML()
automl_settings = {
"time_budget": 2,
"task": "classification",
"log_file_name": "test/{}.log".format(dataset),
"model_history": True,
"log_training_metric": True,
"split_type": TestKFold(5),
}
automl.fit(X, y, **automl_settings)
assert (
automl._state.eval_method == "cv"
), "eval_method must be 'cv' for custom data splitter"
2020-12-04 09:40:27 -08:00
if __name__ == "__main__":
test_groups()