# Download [houses dataset](https://www.openml.org/d/537) from OpenML. The task is to predict median price of the house in the region based on demographic composition and a state of housing market in the region.
[flaml.automl: 09-29 23:06:46] {1446} INFO - Data split method: uniform
[flaml.automl: 09-29 23:06:46] {1450} INFO - Evaluation method: cv
[flaml.automl: 09-29 23:06:46] {1496} INFO - Minimizing error metric: 1-r2
[flaml.automl: 09-29 23:06:46] {1533} INFO - List of ML learners in AutoML Run: ['xgboost']
[flaml.automl: 09-29 23:06:46] {1763} INFO - iteration 0, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1880} INFO - Estimated sufficient time budget=2621s. Estimated necessary time budget=3s.
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 0.3s, estimator xgboost's best error=2.1267, best estimator xgboost's best error=2.1267
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 1, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 0.5s, estimator xgboost's best error=2.1267, best estimator xgboost's best error=2.1267
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 2, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 0.6s, estimator xgboost's best error=0.8485, best estimator xgboost's best error=0.8485
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 3, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 0.8s, estimator xgboost's best error=0.3799, best estimator xgboost's best error=0.3799
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 4, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 1.0s, estimator xgboost's best error=0.3799, best estimator xgboost's best error=0.3799
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 5, current learner xgboost
[flaml.automl: 09-29 23:06:47] {1952} INFO - at 1.2s, estimator xgboost's best error=0.3799, best estimator xgboost's best error=0.3799
[flaml.automl: 09-29 23:06:47] {1763} INFO - iteration 6, current learner xgboost
[flaml.automl: 09-29 23:06:48] {1952} INFO - at 1.5s, estimator xgboost's best error=0.2992, best estimator xgboost's best error=0.2992
[flaml.automl: 09-29 23:06:48] {1763} INFO - iteration 7, current learner xgboost
[flaml.automl: 09-29 23:06:48] {1952} INFO - at 1.9s, estimator xgboost's best error=0.2992, best estimator xgboost's best error=0.2992
[flaml.automl: 09-29 23:06:48] {1763} INFO - iteration 8, current learner xgboost
[flaml.automl: 09-29 23:06:49] {1952} INFO - at 2.2s, estimator xgboost's best error=0.2992, best estimator xgboost's best error=0.2992
[flaml.automl: 09-29 23:06:49] {1763} INFO - iteration 9, current learner xgboost
[flaml.automl: 09-29 23:06:49] {1952} INFO - at 2.5s, estimator xgboost's best error=0.2513, best estimator xgboost's best error=0.2513
[flaml.automl: 09-29 23:06:49] {1763} INFO - iteration 10, current learner xgboost
[flaml.automl: 09-29 23:06:49] {1952} INFO - at 2.8s, estimator xgboost's best error=0.2513, best estimator xgboost's best error=0.2513
[flaml.automl: 09-29 23:06:49] {1763} INFO - iteration 11, current learner xgboost
[flaml.automl: 09-29 23:06:49] {1952} INFO - at 3.0s, estimator xgboost's best error=0.2513, best estimator xgboost's best error=0.2513
[flaml.automl: 09-29 23:06:49] {1763} INFO - iteration 12, current learner xgboost
[flaml.automl: 09-29 23:06:50] {1952} INFO - at 3.3s, estimator xgboost's best error=0.2113, best estimator xgboost's best error=0.2113
[flaml.automl: 09-29 23:06:50] {1763} INFO - iteration 13, current learner xgboost
[flaml.automl: 09-29 23:06:50] {1952} INFO - at 3.5s, estimator xgboost's best error=0.2113, best estimator xgboost's best error=0.2113
[flaml.automl: 09-29 23:06:50] {1763} INFO - iteration 14, current learner xgboost
[flaml.automl: 09-29 23:06:50] {1952} INFO - at 4.0s, estimator xgboost's best error=0.2090, best estimator xgboost's best error=0.2090
[flaml.automl: 09-29 23:06:50] {1763} INFO - iteration 15, current learner xgboost
[flaml.automl: 09-29 23:06:51] {1952} INFO - at 4.5s, estimator xgboost's best error=0.2090, best estimator xgboost's best error=0.2090
[flaml.automl: 09-29 23:06:51] {1763} INFO - iteration 16, current learner xgboost
[flaml.automl: 09-29 23:06:51] {1952} INFO - at 5.2s, estimator xgboost's best error=0.1919, best estimator xgboost's best error=0.1919
[flaml.automl: 09-29 23:06:51] {1763} INFO - iteration 17, current learner xgboost
[flaml.automl: 09-29 23:06:52] {1952} INFO - at 5.5s, estimator xgboost's best error=0.1919, best estimator xgboost's best error=0.1919
[flaml.automl: 09-29 23:06:52] {1763} INFO - iteration 18, current learner xgboost
[flaml.automl: 09-29 23:06:54] {1952} INFO - at 8.0s, estimator xgboost's best error=0.1797, best estimator xgboost's best error=0.1797
[flaml.automl: 09-29 23:06:54] {1763} INFO - iteration 19, current learner xgboost
[flaml.automl: 09-29 23:06:55] {1952} INFO - at 9.0s, estimator xgboost's best error=0.1797, best estimator xgboost's best error=0.1797
[flaml.automl: 09-29 23:06:55] {1763} INFO - iteration 20, current learner xgboost
[flaml.automl: 09-29 23:07:08] {1952} INFO - at 21.8s, estimator xgboost's best error=0.1797, best estimator xgboost's best error=0.1797
[flaml.automl: 09-29 23:07:08] {1763} INFO - iteration 21, current learner xgboost
[flaml.automl: 09-29 23:07:11] {1952} INFO - at 24.4s, estimator xgboost's best error=0.1797, best estimator xgboost's best error=0.1797
[flaml.automl: 09-29 23:07:11] {1763} INFO - iteration 22, current learner xgboost
[flaml.automl: 09-29 23:07:16] {1952} INFO - at 30.0s, estimator xgboost's best error=0.1782, best estimator xgboost's best error=0.1782
[flaml.automl: 09-29 23:07:16] {1763} INFO - iteration 23, current learner xgboost
[flaml.automl: 09-29 23:07:20] {1952} INFO - at 33.5s, estimator xgboost's best error=0.1782, best estimator xgboost's best error=0.1782
[flaml.automl: 09-29 23:07:20] {1763} INFO - iteration 24, current learner xgboost
[flaml.automl: 09-29 23:07:29] {1952} INFO - at 42.3s, estimator xgboost's best error=0.1782, best estimator xgboost's best error=0.1782
[flaml.automl: 09-29 23:07:29] {1763} INFO - iteration 25, current learner xgboost
[flaml.automl: 09-29 23:07:30] {1952} INFO - at 43.2s, estimator xgboost's best error=0.1782, best estimator xgboost's best error=0.1782
[flaml.automl: 09-29 23:07:30] {1763} INFO - iteration 26, current learner xgboost
[flaml.automl: 09-29 23:07:50] {1952} INFO - at 63.4s, estimator xgboost's best error=0.1663, best estimator xgboost's best error=0.1663
[flaml.automl: 09-29 23:07:50] {2059} INFO - selected model: <xgboost.core.Boosterobjectat0x7f6399005910>
[flaml.automl: 09-29 23:07:55] {2122} INFO - retrain xgboost for 5.4s
[flaml.automl: 09-29 23:07:55] {2128} INFO - retrained model: <xgboost.core.Boosterobjectat0x7f6398fc0eb0>
[flaml.automl: 09-29 23:07:55] {1557} INFO - fit succeeded
[flaml.automl: 09-29 23:07:55] {1558} INFO - Time taken to find the best model: 63.427649974823
[flaml.automl: 09-29 23:07:55] {1569} WARNING - Time taken to find the best model is 106% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.
You can easily enable a custom objective function by adding a customized XGBoost learner (inherit XGBoostEstimator or XGBoostSklearnEstimator) in FLAML. In the following example, we show how to add such a customized XGBoost learner with a custom objective function.
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_xgboost.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_xgboost.ipynb)