* For foundation models like the GPT serie and AI agents based on them, it automates the experimentation and optimization of their performance to maximize the effectiveness for applications and minimize the inference cost.
* For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
* It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training/inference/evaluation code). Users can customize only when and what they need to, and leave the rest to the library.
* It supports fast and economical automatic tuning, capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping. FLAML is powered by a [cost-effective
A suite of utilities are offered to accelerate the experimentation and application development, such as low-level inference API with caching, templating, filtering, and higher-level components like LLM-based coding and interactive agents.
It automatically tunes the hyperparameters and selects the best model from default learners such as LightGBM, XGBoost, random forest etc. for the specified time budget 60 seconds. [Customizing](Use-Cases/task-oriented-automl#customize-automlfit) the optimization metrics, learners and search spaces etc. is very easy. For example,
FLAML offers a unique, seamless and effortless way to leverage AutoML for the commonly used classifiers and regressors such as LightGBM and XGBoost. For example, if you are using `lightgbm.LGBMClassifier` as your current learner, all you need to do is to replace `from lightgbm import LGBMClassifier` by:
Then, you can use it just like you use the original `LGMBClassifier`. Your other code can remain unchanged. When you call the `fit()` function from `flaml.default.LGBMClassifier`, it will automatically instantiate a good data-dependent hyperparameter configuration for your dataset, which is expected to work better than the default configuration.
* Understand the use cases for [Auto Generation](Use-Cases/Auto-Generation), [Task-oriented AutoML](Use-Cases/Task-Oriented-Automl), [Tune user-defined function](Use-Cases/Tune-User-Defined-Function) and [Zero-shot AutoML](Use-Cases/Zero-Shot-AutoML).
* Find code examples under "Examples": from [AutoGen - OpenAI](Examples/AutoGen-OpenAI) to [Tune - PyTorch](Examples/Tune-PyTorch).
If you like our project, please give it a [star](https://github.com/microsoft/FLAML/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](Contribute).