autogen/src/agnext/chat/agents/oai_assistant.py

70 lines
2.5 KiB
Python
Raw Normal View History

2024-05-23 08:23:24 -07:00
import openai
from ..agents.base import BaseChatAgent
from ..messages import ChatMessage
from ..runtimes import SingleThreadedRuntime
class OpenAIAssistantAgent(BaseChatAgent):
def __init__(
self,
name: str,
description: str,
runtime: SingleThreadedRuntime,
client: openai.AsyncClient,
assistant_id: str,
thread_id: str,
) -> None:
super().__init__(name, description, runtime)
self._client = client
self._assistant_id = assistant_id
self._thread_id = thread_id
self._current_session_window_length = 0
async def on_chat_message(self, message: ChatMessage) -> ChatMessage:
print("---------------")
print(f"{self.name} received message from {message.sender}: {message.body}")
print("---------------")
if message.reset:
# Reset the current session window.
self._current_session_window_length = 0
# Save the message to the thread.
_ = await self._client.beta.threads.messages.create(
thread_id=self._thread_id,
content=message.body,
role="user",
metadata={"sender": message.sender},
)
self._current_session_window_length += 1
# If the message is a save_message_only message, return early.
if message.save_message_only:
return ChatMessage(body="OK", sender=self.name)
# Create a run and wait until it finishes.
run = await self._client.beta.threads.runs.create_and_poll(
thread_id=self._thread_id,
assistant_id=self._assistant_id,
truncation_strategy={
"type": "last_messages",
"last_messages": self._current_session_window_length,
},
)
if run.status != "completed":
# TODO: handle other statuses.
raise ValueError(f"Run did not complete successfully: {run}")
# Get the last message from the run.
response = await self._client.beta.threads.messages.list(self._thread_id, run_id=run.id, order="desc", limit=1)
last_message_content = response.data[0].content
# TODO: handle array of content.
text_content = [content for content in last_message_content if content.type == "text"]
if not text_content:
raise ValueError(f"Expected text content in the last message: {last_message_content}")
# TODO: handle multiple text content.
return ChatMessage(body=text_content[0].text.value, sender=self.name)