autogen/flaml/nlp/README.md

75 lines
2.3 KiB
Markdown
Raw Normal View History

# Hyperparameter Optimization for Huggingface Transformers
Fine-tuning pre-trained language models based on the transformers library.
An example:
```python
from flaml import AutoML
import pandas as pd
train_dataset = pd.read_csv("data/input/train.tsv", delimiter="\t", quoting=3)
dev_dataset = pd.read_csv("data/input/dev.tsv", delimiter="\t", quoting=3)
test_dataset = pd.read_csv("data/input/test.tsv", delimiter="\t", quoting=3)
custom_sent_keys = ["#1 String", "#2 String"]
label_key = "Quality"
X_train = train_dataset[custom_sent_keys]
y_train = train_dataset[label_key]
X_val = dev_dataset[custom_sent_keys]
y_val = dev_dataset[label_key]
X_test = test_dataset[custom_sent_keys]
automl = AutoML()
automl_settings = {
"gpu_per_trial": 0, # use a value larger than 0 for GPU training
"max_iter": 10,
"time_budget": 300,
"task": "seq-classification",
"metric": "accuracy",
}
automl_settings["custom_hpo_args"] = {
"model_path": "google/electra-small-discriminator",
"output_dir": "data/output/",
"ckpt_per_epoch": 1,
}
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **automl_settings
)
automl.predict(X_test)
```
The current use cases that are supported:
1. A simplified version of fine-tuning the GLUE dataset using HuggingFace;
2. For selecting better search space for fine-tuning the GLUE dataset;
3. Use the search algorithms in flaml for more efficient fine-tuning of HuggingFace.
The use cases that can be supported in future:
1. HPO fine-tuning for text generation;
2. HPO fine-tuning for question answering.
## Troubleshooting fine-tuning HPO for pre-trained language models
To reproduce the results for our ACL2021 paper:
* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://arxiv.org/abs/2106.09204). Xueqing Liu, Chi Wang. ACL-IJCNLP 2021.
```bibtex
@inproceedings{liu2021hpo,
title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},
author={Xueqing Liu and Chi Wang},
year={2021},
booktitle={ACL-IJCNLP},
}
```
Please refer to the following jupyter notebook: [Troubleshooting HPO for fine-tuning pre-trained language models](https://github.com/microsoft/FLAML/blob/main/notebook/research/acl2021.ipynb)