autogen/test/test_forecast.py

132 lines
4.3 KiB
Python
Raw Normal View History

import numpy as np
from flaml import AutoML
def test_forecast_automl(budget=5):
# using dataframe
import statsmodels.api as sm
data = sm.datasets.co2.load_pandas().data["co2"].resample("MS").mean()
data = (
data.fillna(data.bfill())
.to_frame()
.reset_index()
.rename(columns={"index": "ds", "co2": "y"})
)
num_samples = data.shape[0]
time_horizon = 12
split_idx = num_samples - time_horizon
df = data[:split_idx]
X_test = data[split_idx:]["ds"]
y_test = data[split_idx:]["y"]
automl = AutoML()
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "forecast", # task type
"log_file_name": "test/CO2_forecast.log", # flaml log file
"eval_method": "holdout",
"label": ("ds", "y"),
}
"""The main flaml automl API"""
try:
import prophet
automl.fit(dataframe=df, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
dataframe=df,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
""" retrieve best config and best learner"""
print("Best ML leaner:", automl.best_estimator)
print("Best hyperparmeter config:", automl.best_config)
print(f"Best mape on validation data: {automl.best_loss}")
print(f"Training duration of best run: {automl.best_config_train_time}s")
print(automl.model.estimator)
""" pickle and save the automl object """
import pickle
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
""" compute predictions of testing dataset """
y_pred = automl.predict(X_test)
print("Predicted labels", y_pred)
print("True labels", y_test)
""" compute different metric values on testing dataset"""
from flaml.ml import sklearn_metric_loss_score
print("mape", "=", sklearn_metric_loss_score("mape", y_pred, y_test))
from flaml.data import get_output_from_log
(
time_history,
best_valid_loss_history,
valid_loss_history,
config_history,
metric_history,
) = get_output_from_log(filename=settings["log_file_name"], time_budget=budget)
for config in config_history:
print(config)
print(automl.prune_attr)
print(automl.max_resource)
print(automl.min_resource)
X_train = df["ds"]
y_train = df["y"]
automl = AutoML()
try:
automl.fit(X_train=X_train, y_train=y_train, **settings, period=time_horizon)
except ImportError:
print("not using prophet due to ImportError")
automl.fit(
X_train=X_train,
y_train=y_train,
**settings,
estimator_list=["arima", "sarimax"],
period=time_horizon,
)
def test_numpy():
X_train = np.arange("2014-01", "2021-01", dtype="datetime64[M]")
y_train = np.random.random(size=72)
automl = AutoML()
try:
import prophet
automl.fit(
X_train=X_train[:60], # a single column of timestamp
y_train=y_train, # value for each timestamp
period=12, # time horizon to forecast, e.g., 12 months
task="forecast",
time_budget=3, # time budget in seconds
log_file_name="test/forecast.log",
)
print(automl.predict(X_train[60:]))
print(automl.predict(12))
except ValueError:
print("ValueError for prophet is raised as expected.")
except ImportError:
print("not using prophet due to ImportError")
automl = AutoML()
automl.fit(
X_train=X_train[:72], # a single column of timestamp
y_train=y_train, # value for each timestamp
period=12, # time horizon to forecast, e.g., 12 months
task="forecast",
time_budget=1, # time budget in seconds
estimator_list=["arima", "sarimax"],
log_file_name="test/forecast.log",
)
print(automl.predict(X_train[72:]))
# an alternative way to specify predict steps for arima/sarimax
print(automl.predict(12))
if __name__ == "__main__":
test_forecast_automl(60)