2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "Copyright (c) Microsoft Corporation. All rights reserved. \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Licensed under the MIT License.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Tune LightGBM with FLAML Library\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 1. Introduction\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "FLAML is a Python library (https://github.com/microsoft/FLAML) designed to automatically produce accurate machine learning models \n",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "with low computational cost. It is fast and economical. The simple and lightweight design makes it easy \n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "to use and extend, such as adding new learners. FLAML can \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- serve as an economical AutoML engine,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be used as a fast hyperparameter tuning tool, or \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "- be embedded in self-tuning software that requires low latency & resource in repetitive\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "   tuning tasks.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In this notebook, we demonstrate how to use FLAML library to tune hyperparameters of LightGBM with a regression example.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-06-21 18:59:07 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "FLAML requires `Python>=3.7`. To run this notebook example, please install flaml with the `notebook` option:\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "```bash\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "pip install flaml[notebook]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "```"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "%pip install flaml[notebook]==1.0.8"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 2. Regression Example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Load data and preprocess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Download [houses dataset](https://www.openml.org/d/537) from OpenML. The task is to predict median price of the house in the region based on demographic composition and a state of housing market in the region."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "/root/.local/lib/python3.9/site-packages/xgboost/compat.py:31: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  from pandas import MultiIndex, Int64Index\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "download dataset from openml\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Dataset name: houses\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_train.shape: (15480, 8), y_train.shape: (15480,);\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "X_test.shape: (5160, 8), y_test.shape: (5160,)\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import load_openml_dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir='./')"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Run FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. "
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' import AutoML class from flaml package '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml import AutoML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"time_budget\": 240,  # total running time in seconds\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-02-15 13:17:43 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"metric\": 'r2',  # primary metrics for regression can be chosen from: ['mae','mse','r2','rmse','mape']\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-04-08 09:29:55 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"estimator_list\": ['lgbm'],  # list of ML learners; we tune lightgbm in this example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'regression',  # task type    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'houses_experiment.log',  # flaml log file\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    \"seed\": 7654321,    # random seed\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "}"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2427} INFO - task = regression\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2429} INFO - Data split method: uniform\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2432} INFO - Evaluation method: cv\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2501} INFO - Minimizing error metric: 1-r2\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2641} INFO - List of ML learners in AutoML Run: ['lgbm']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:15] {2933} INFO - iteration 0, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {3061} INFO - Estimated sufficient time budget=1981s. Estimated necessary time budget=2s.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {3108} INFO -  at 0.3s,\testimator lgbm's best error=0.7383,\tbest estimator lgbm's best error=0.7383\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 1, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {3108} INFO -  at 0.5s,\testimator lgbm's best error=0.7383,\tbest estimator lgbm's best error=0.7383\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 2, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {3108} INFO -  at 0.7s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 3, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {3108} INFO -  at 1.1s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:16] {2933} INFO - iteration 4, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:17] {3108} INFO -  at 1.3s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:17] {2933} INFO - iteration 5, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {3108} INFO -  at 3.6s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 6, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {3108} INFO -  at 3.8s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 7, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {3108} INFO -  at 4.2s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:19] {2933} INFO - iteration 8, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:20] {3108} INFO -  at 4.7s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:20] {2933} INFO - iteration 9, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:20] {3108} INFO -  at 4.9s,\testimator lgbm's best error=0.1868,\tbest estimator lgbm's best error=0.1868\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:20] {2933} INFO - iteration 10, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:22] {3108} INFO -  at 6.6s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:22] {2933} INFO - iteration 11, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:22] {3108} INFO -  at 7.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:22] {2933} INFO - iteration 12, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:28] {3108} INFO -  at 12.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:28] {2933} INFO - iteration 13, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:29] {3108} INFO -  at 13.6s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:29] {2933} INFO - iteration 14, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:34] {3108} INFO -  at 18.4s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:34] {2933} INFO - iteration 15, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:39] {3108} INFO -  at 23.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:39] {2933} INFO - iteration 16, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:40] {3108} INFO -  at 24.5s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:40] {2933} INFO - iteration 17, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:53] {3108} INFO -  at 37.9s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:53] {2933} INFO - iteration 18, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:53] {3108} INFO -  at 38.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:53] {2933} INFO - iteration 19, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:54] {3108} INFO -  at 39.2s,\testimator lgbm's best error=0.1744,\tbest estimator lgbm's best error=0.1744\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:54] {2933} INFO - iteration 20, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:56] {3108} INFO -  at 41.0s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:56] {2933} INFO - iteration 21, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:58] {3108} INFO -  at 42.5s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:58] {2933} INFO - iteration 22, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:59] {3108} INFO -  at 44.2s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:22:59] {2933} INFO - iteration 23, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:03] {3108} INFO -  at 47.8s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:03] {2933} INFO - iteration 24, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:04] {3108} INFO -  at 48.6s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:04] {2933} INFO - iteration 25, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:05] {3108} INFO -  at 49.5s,\testimator lgbm's best error=0.1738,\tbest estimator lgbm's best error=0.1738\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:05] {2933} INFO - iteration 26, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:07] {3108} INFO -  at 51.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:07] {2933} INFO - iteration 27, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:09] {3108} INFO -  at 53.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:09] {2933} INFO - iteration 28, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:11] {3108} INFO -  at 55.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:11] {2933} INFO - iteration 29, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:12] {3108} INFO -  at 56.6s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:12] {2933} INFO - iteration 30, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:15] {3108} INFO -  at 59.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:15] {2933} INFO - iteration 31, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:20] {3108} INFO -  at 64.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:20] {2933} INFO - iteration 32, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:20] {3108} INFO -  at 65.1s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:20] {2933} INFO - iteration 33, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:31] {3108} INFO -  at 76.0s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:31] {2933} INFO - iteration 34, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:32] {3108} INFO -  at 76.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:32] {2933} INFO - iteration 35, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:35] {3108} INFO -  at 79.3s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:35] {2933} INFO - iteration 36, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:35] {3108} INFO -  at 80.2s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:35] {2933} INFO - iteration 37, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:37] {3108} INFO -  at 81.5s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:37] {2933} INFO - iteration 38, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:39] {3108} INFO -  at 83.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:39] {2933} INFO - iteration 39, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:40] {3108} INFO -  at 84.8s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:40] {2933} INFO - iteration 40, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:43] {3108} INFO -  at 88.1s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:43] {2933} INFO - iteration 41, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:45] {3108} INFO -  at 89.4s,\testimator lgbm's best error=0.1611,\tbest estimator lgbm's best error=0.1611\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:45] {2933} INFO - iteration 42, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:47] {3108} INFO -  at 91.7s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:47] {2933} INFO - iteration 43, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:48] {3108} INFO -  at 92.4s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:48] {2933} INFO - iteration 44, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:54] {3108} INFO -  at 98.5s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:54] {2933} INFO - iteration 45, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:55] {3108} INFO -  at 100.2s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:55] {2933} INFO - iteration 46, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:58] {3108} INFO -  at 102.6s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:58] {2933} INFO - iteration 47, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:59] {3108} INFO -  at 103.4s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:23:59] {2933} INFO - iteration 48, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:03] {3108} INFO -  at 108.0s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:03] {2933} INFO - iteration 49, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:04] {3108} INFO -  at 108.8s,\testimator lgbm's best error=0.1608,\tbest estimator lgbm's best error=0.1608\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:04] {2933} INFO - iteration 50, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:12] {3108} INFO -  at 116.3s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:24:12] {2933} INFO - iteration 51, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:01] {3108} INFO -  at 166.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:01] {2933} INFO - iteration 52, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:02] {3108} INFO -  at 167.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:02] {2933} INFO - iteration 53, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:04] {3108} INFO -  at 168.7s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:04] {2933} INFO - iteration 54, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:38] {3108} INFO -  at 203.0s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:38] {2933} INFO - iteration 55, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:47] {3108} INFO -  at 211.9s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:47] {2933} INFO - iteration 56, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:51] {3108} INFO -  at 216.2s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:51] {2933} INFO - iteration 57, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:53] {3108} INFO -  at 217.8s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:25:53] {2933} INFO - iteration 58, current learner lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:26:19] {3108} INFO -  at 243.9s,\testimator lgbm's best error=0.1558,\tbest estimator lgbm's best error=0.1558\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:26:21] {3372} INFO - retrain lgbm for 1.7s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:26:21] {3379} INFO - retrained model: LGBMRegressor(colsample_bytree=0.6884091116362046,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "              learning_rate=0.0825101833775657, max_bin=1023,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "              min_child_samples=15, n_estimators=436, num_leaves=46,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "              reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "              verbose=-1)\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:26:21] {2672} INFO - fit succeeded\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:26:21] {2673} INFO - Time taken to find the best model: 116.267258644104\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "'''The main flaml automl API'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.fit(X_train=X_train, y_train=y_train, **settings)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Best model and metric"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Best hyperparmeter config: {'n_estimators': 436, 'num_leaves': 46, 'min_child_samples': 15, 'learning_rate': 0.0825101833775657, 'log_max_bin': 10, 'colsample_bytree': 0.6884091116362046, 'reg_alpha': 0.0010949400705571237, 'reg_lambda': 0.004934208563558304}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Best r2 on validation data: 0.8442\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Training duration of best run: 1.668 s\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' retrieve best config'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best r2 on validation data: {0:.4g}'.format(1-automl.best_loss))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/html": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              learning_rate=0.0825101833775657, max_bin=1023,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              min_child_samples=15, n_estimators=436, num_leaves=46,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              verbose=-1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LGBMRegressor</label><div class=\"sk-toggleable__content\"><pre>LGBMRegressor(colsample_bytree=0.6884091116362046,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              learning_rate=0.0825101833775657, max_bin=1023,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              min_child_samples=15, n_estimators=436, num_leaves=46,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              verbose=-1)</pre></div></div></div></div></div>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ],
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "LGBMRegressor(colsample_bytree=0.6884091116362046,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              learning_rate=0.0825101833775657, max_bin=1023,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              min_child_samples=15, n_estimators=436, num_leaves=46,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "              reg_alpha=0.0010949400705571237, reg_lambda=0.004934208563558304,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								       "              verbose=-1)"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 6,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.model.estimator"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<BarContainer object of 8 artists>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAD4CAYAAACOhb23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAee0lEQVR4nO3deZRdVZn38e+PIiRAsAIksqojUoJpEEgokgIFQxonUOyXQaKhoSFgL9MMouKiJS0uDdi2QLSlURDC20gQRDsMwgKZGgjkRUKoIpWqBAggiS0RQYYUYCRA5Xn/OLvkcq3h3Bpyh/p91rqrzt1nn72ffU/Bk73PqXMVEZiZmVn/tih3AGZmZtXCSdPMzCwnJ00zM7OcnDTNzMxyctI0MzPLactyB2DDa/z48dHY2FjuMMzMqkpra+sLETGhuNxJs8Y1NjbS0tJS7jDMzKqKpN/2VO7lWTMzs5ycNM3MzHJy0jQzM8vJSdPMzCwnJ00zM7OcnDTNzMxyctI0MzPLyUnTzMwsJz/coMZ1rOukce6t5Q7DzGzYrD3v05utL880zczMcnLSNDMzy8lJ08zMLCcnTTMzs5ycNM3MzHJy0jQzM8vJSbOApNeGoc3DJc1N20dK2nMAbSyW1DzUsZmZWWmcNIdZRNwcEeelt0cCJSdNMzOrDE6aPVBmvqSVkjokzUrlB6dZ33WSHpd0jSSlfYelslZJF0m6JZWfKOlHkg4EDgfmS2qTtFvhDFLSeElr0/bWkn4u6TFJNwJbF8R2iKQHJT0iaZGksZv30zEzG7n8RKCefQZoAvYBxgMPS7o/7dsX2Av4PfAA8GFJLcBlwIyIWCPp2uIGI+LXkm4GbomI6wBSvu3JKcCGiPiApCnAI6n+eOAbwMcj4k+SzgK+CpxbeLCkOcAcgLp3TRjYJ2BmZn/FM82eTQeujYiuiHgOuA/YL+1bFhHPRMQmoA1oBPYAno6INanOXyXNEs0ArgaIiHagPZV/iGx59wFJbcBsYJfigyNiQUQ0R0Rz3Tb1gwzFzMy6eaZZuo0F210M7jN8i7f/4TImR30Bd0XEPwyiTzMzGyDPNHu2BJglqU7SBLKZ37I+6q8GdpXUmN7P6qXeq8B2Be/XAtPS9syC8vuBYwEk7Q1MSeVLyZaD35/2bSvpb/MMyMzMBs9Js2c3ki2JrgDuAb4WEX/orXJE/Bk4FbhdUitZcuzsoerPgX+RtFzSbsD3gFMkLSe7dtrtx8BYSY+RXa9sTf38ETgRuFZSO/Ag2dKwmZltBoqIcsdQEySNjYjX0t20FwNPRsQPyh3X6IZJ0TD7wnKHYWY2bIbjq8EktUbEX/19vGeaQ+cL6eacVUA92d20ZmZWQ3wj0BBJs8qyzyzNzGz4eKZpZmaWk5OmmZlZTk6aZmZmOfmaZo2bPLGelmG4s8zMbCTyTNPMzCwnJ00zM7OcnDTNzMxyctI0MzPLyTcC1biOdZ00zr213GGYmW1Ww/FoPfBM08zMLDcnTTMzs5ycNM3MzHJy0jQzM8vJSdPMzCwnJ00zM7OcnDRLIOm1fvaPk3Rqwfu/kXRd2m6SdNgA+pwn6czSozUzs6HmpDm0xgF/SZoR8fuImJneNgElJ00zM6scTpoDIGmspLslPSKpQ9IRadd5wG6S2iTNl9QoaaWkrYBzgVlp36ziGWSq15i2z5b0hKT/B+xeUGc3SbdLapW0RNIem2/UZmbmJwINzOvAURHxiqTxwFJJNwNzgb0jogmgOwlGxBuSvgk0R8QX0755PTUsaRpwDNnMdEvgEaA17V4AnBwRT0r6IHAJ8NEe2pgDzAGoe9eEIRiumZmBk+ZACfh3STOATcBEYKchavsg4MaI2ACQkjGSxgIHAoskddcd3VMDEbGALMEyumFSDFFcZmYjnpPmwBwHTACmRcSbktYCY0ps4y3euTze3/FbAOu7Z7FmZrb5+ZrmwNQDz6eE+RFgl1T+KrBdL8cU71sLTAWQNBV4Xyq/HzhS0taStgP+D0BEvAKskfTZdIwk7TN0QzIzs/44aQ7MNUCzpA7gBOBxgIh4EXgg3dQzv+iYe4E9u28EAq4HdpC0Cvgi8ERq4xHgF8AK4Dbg4YI2jgP+SdIKYBVwBGZmttkowpe8atnohknRMPvCcodhZrZZDfarwSS1RkRzcblnmmZmZjk5aZqZmeXkpGlmZpaTk6aZmVlO/jvNGjd5Yj0tg7wgbmZmGc80zczMcnLSNDMzy8lJ08zMLCcnTTMzs5x8I1CN61jXSePcW8sdhlnFGOyTYmxk80zTzMwsJydNMzOznJw0zczMcnLSNDMzy8lJ08zMLCcnTTMzs5xGRNKU1ChpZRn6fa3E+vMkndlDeVniNzOzdxoRSdPMzGwojKSkWSfpckmrJN0paWtJTZKWSmqXdKOk7QEkLZbUnLbHS1qbtveStExSWzpmUir/x4LyyyTVdXcq6TuSVqR+dkpljZLuSW3cLem9xcFKmpaOWwGcVlDeYwxmZjb8RlLSnARcHBF7AeuBo4GrgLMiYgrQAXyrnzZOBv4zIpqAZuAZSR8AZgEfTuVdwHGp/rbA0ojYB7gf+EIq/yGwMPV7DXBRD339BDg9HdtnDMUHSpojqUVSS9eGzn6GZGZmeY2kpLkmItrSdiuwGzAuIu5LZQuBGf208SDwdUlnAbtExJ+BjwHTgIcltaX3u6b6bwC3FPTZmLYPAH6Wtn8KTC/sRNK4FNv9BXX6iuEdImJBRDRHRHPdNvX9DMnMzPIaSUlzY8F2FzCuj7pv8fZnM6a7MCJ+BhwO/Bn4laSPAiKbNTal1+4RMS8d8mZEREGfg37Wby8xmJnZZjCSkmaxTuBlSQel98cD3bPOtWSzR4CZ3QdI2hV4OiIuAm4CpgB3AzMlvTvV2UHSLv30/WvgmLR9HLCkcGdErAfWS5peUKevGMzMbDMYyUkTYDYwX1I70AScm8q/B5wiaTkwvqD+54CVaRl2b+CqiHgU+AZwZ2rnLqChn35PB05K9Y8HvtxDnZOAi1Nf6iuGXCM1M7NB09urh1aLRjdMiobZF5Y7DLOK4a8GszwktUZEc3H5SJ9pmpmZ5eakaWZmlpOTppmZWU5OmmZmZjkN+u8GrbJNnlhPi298MDMbEp5pmpmZ5eSkaWZmlpOTppmZWU5OmmZmZjn5RqAa17Guk8a5t5Y7DDMbBn660ebnmaaZmVlOTppmZmY5OWmamZnl5KRpZmaWk5OmmZlZTk6aZmZmOTlpDgNJjZJW5qhzbMH7ZkkXDX90ZmY2UE6a5dMI/CVpRkRLRHypfOGYmVl/RmTSTLO8xyVdI+kxSddJ2kbSxyQtl9Qh6QpJo1P9tZIuSOXLJL0/lV8paWZBu6/10tcSSY+k14Fp13nAQZLaJJ0h6WBJt6RjdpD0S0ntkpZKmpLK56W4Fkt6WpKTrJnZZjQik2ayO3BJRHwAeAX4KnAlMCsiJpM9LemUgvqdqfxHwIUl9PM88ImImArMArqXYOcCSyKiKSJ+UHTMOcDyiJgCfB24qmDfHsChwP7AtySNKu5Q0hxJLZJaujZ0lhCqmZn1ZSQnzd9FxANp+2rgY8CaiHgilS0EZhTUv7bg5wEl9DMKuFxSB7AI2DPHMdOBnwJExD3AjpLelfbdGhEbI+IFsoS8U/HBEbEgIpojorlum/oSQjUzs76M5GfPRtH79cCOOet3b79F+oeHpC2ArXo47gzgOWCfVPf1AcRaaGPBdhcj+xyamW1WI3mm+V5J3TPGY4EWoLH7eiVwPHBfQf1ZBT8fTNtrgWlp+3CyWWWxeuDZiNiU2qxL5a8C2/US2xLgOABJBwMvRMQreQZlZmbDZyTPUlYDp0m6AngU+BKwFFgkaUvgYeDSgvrbS2onm+n9Qyq7HLhJ0grgduBPPfRzCXC9pBOK6rQDXenYK4HlBcfMA65I/W0AZg9uqGZmNhQUUbxKWfskNQK3RMTeOeuvBZrTdcSqMrphUjTMvrDcYZjZMPBXgw0fSa0R0VxcPpKXZ83MzEoyIpdnI2ItkGuWmeo3DlswZmZWNTzTNDMzy8lJ08zMLCcnTTMzs5xG5DX
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<Figure size 432x288 with 1 Axes>"
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "needs_background": "light"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "display_data"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import matplotlib.pyplot as plt\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "plt.barh(automl.feature_names_in_, automl.feature_importances_)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 16:26:46 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 8,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "''' pickle and save the automl object '''\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "import pickle\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-03-16 22:13:35 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "with open('automl.pkl', 'wb') as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 9,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Predicted labels [162131.66541776 261207.15681479 157976.50985102 ... 205999.47588989\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      " 223985.57564169 277733.77442341]\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "True labels 14740    136900.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "10101    241300.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "20566    200700.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "2670      72500.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "15709    460000.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "           ...   \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "13132    121200.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "8228     137500.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "3948     160900.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "8522     227300.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "16798    265600.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Name: median_house_value, Length: 5160, dtype: float64\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute predictions of testing dataset ''' \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = automl.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('True labels', y_test)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 10,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "r2 = 0.8522136092023422\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "mse = 1953515373.4904487\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "mae = 29086.15911420206\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' compute different metric values on testing dataset'''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('r2', '=', 1 - sklearn_metric_loss_score('r2', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('mse', '=', sklearn_metric_loss_score('mse', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('mae', '=', sklearn_metric_loss_score('mae', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 11,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "subslide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.09999999999999995, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 4, 'num_leaves': 4, 'min_child_samples': 20, 'learning_rate': 0.09999999999999995, 'log_max_bin': 8, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 1.0}}\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 22, 'num_leaves': 4, 'min_child_samples': 18, 'learning_rate': 0.2293009676418639, 'log_max_bin': 9, 'colsample_bytree': 0.9086551727646448, 'reg_alpha': 0.0015561782752413472, 'reg_lambda': 0.33127416269768944}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 22, 'num_leaves': 4, 'min_child_samples': 18, 'learning_rate': 0.2293009676418639, 'log_max_bin': 9, 'colsample_bytree': 0.9086551727646448, 'reg_alpha': 0.0015561782752413472, 'reg_lambda': 0.33127416269768944}}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 28, 'num_leaves': 20, 'min_child_samples': 17, 'learning_rate': 0.32352862101602586, 'log_max_bin': 10, 'colsample_bytree': 0.8801327898366843, 'reg_alpha': 0.004475520554844502, 'reg_lambda': 0.033081571878574946}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 28, 'num_leaves': 20, 'min_child_samples': 17, 'learning_rate': 0.32352862101602586, 'log_max_bin': 10, 'colsample_bytree': 0.8801327898366843, 'reg_alpha': 0.004475520554844502, 'reg_lambda': 0.033081571878574946}}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 44, 'num_leaves': 81, 'min_child_samples': 29, 'learning_rate': 0.26477481203117526, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.028486834222229064}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 44, 'num_leaves': 81, 'min_child_samples': 29, 'learning_rate': 0.26477481203117526, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.028486834222229064}}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 44, 'num_leaves': 70, 'min_child_samples': 19, 'learning_rate': 0.182061387379683, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.001534805484993033}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 44, 'num_leaves': 70, 'min_child_samples': 19, 'learning_rate': 0.182061387379683, 'log_max_bin': 10, 'colsample_bytree': 1.0, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.001534805484993033}}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "{'Current Learner': 'lgbm', 'Current Sample': 15480, 'Current Hyper-parameters': {'n_estimators': 34, 'num_leaves': 178, 'min_child_samples': 14, 'learning_rate': 0.16444778912464286, 'log_max_bin': 9, 'colsample_bytree': 0.8963761466973907, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.027857858022692302}, 'Best Learner': 'lgbm', 'Best Hyper-parameters': {'n_estimators': 34, 'num_leaves': 178, 'min_child_samples': 14, 'learning_rate': 0.16444778912464286, 'log_max_bin': 9, 'colsample_bytree': 0.8963761466973907, 'reg_alpha': 0.0009765625, 'reg_lambda': 0.027857858022692302}}\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.data import get_output_from_log\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "time_history, best_valid_loss_history, valid_loss_history, config_history, metric_history = \\\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    get_output_from_log(filename=settings['log_file_name'], time_budget=60)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "for config in config_history:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    print(config)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 12,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "slideshow": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "slide_type": "slide"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb5ElEQVR4nO3de5wddZ3m8c9DEyDKJWJaB0JC4hCjwQvRCOIVGDXghURFBpidVRyNzojjiBMFR5HBZQeHGVx8bdQFlgFd7ggxajQygqiAkGCAEDBMRIQ0KEEIIEZCkmf/qGo4NKdPOqHrnO5Tz/v16lef+tXvVH0r6e7nVP3qIttERER9bdPpAiIiorMSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgogWJL1R0spO1xFRpQRBjFiS7pL0lk7WYPuntqdVtXxJsyT9RNKjktZIulrSoVWtL6KZBEHUmqSeDq77MOAS4BvAHsALgROAd23FsiQpv8+xVfKDE6OOpG0kHSfpV5J+L+liSbs2zL9E0m8lPVx+2t67Yd45kr4maZGkx4ADyz2Pf5R0S/meiyTtUPY/QNLqhvcP2rec/2lJ90m6V9KHJFnSXk22QcBpwBdtn2X7YdubbF9t+8NlnxMl/b+G90wul7dtOf1jSSdLugb4IzBP0tIB6/mkpIXl6+0l/ZukuyX9TtLXJY19lv8d0QUSBDEafRyYA7wZ2B14CJjfMP/7wFTgBcAvgPMGvP8o4GRgJ+BnZdvhwMHAFOAVwAdarL9pX0kHA8cCbwH2Ag5osYxpwETg0hZ9huKvgbkU2/J1YJqkqQ3zjwLOL1+fArwY2KesbwLFHkjUXIIgRqOPAv9ke7Xtx4ETgcP6PynbPtv2ow3zXilpl4b3f9v2NeUn8D+VbV+xfa/tB4HvUPyxHMxgfQ8H/sP2Ctt/LNc9mOeX3+8b2iYP6pxyfRtsPwx8GzgSoAyElwALyz2QucAnbT9o+1HgfwJHPMv1RxdIEMRotCdwuaS1ktYCtwMbgRdK6pF0SnnY6BHgrvI94xvef0+TZf624fUfgR1brH+wvrsPWHaz9fT7ffl9txZ9hmLgOs6nDAKKvYEFZSj1As8Bbmz4d/tB2R41lyCI0ege4BDb4xq+drDdR/HHbzbF4ZldgMnle9Tw/qpuuXsfxaBvv4kt+q6k2I73tujzGMUf735/1qTPwG25AuiVtA9FIPQfFnoAWAfs3fBvtovtVoEXNZEgiJFujKQdGr62pTgWfrKkPQEk9UqaXfbfCXic4hP3cygOf7TLxcDRkl4q6TnA5wfr6OL+78cCn5d0tKSdy0HwN0g6o+x2E/AmSZPKQ1vHb64A209QnIl0KrArRTBgexNwJvBlSS8AkDRB0qyt3djoHgmCGOkWUXyS7f86ETgdWAj8UNKjwM+B/cr+3wB+A/QBt5Xz2sL294GvAFcBqxrW/fgg/S8F/hL4IHAv8Dvgf1Ac58f2FcBFwC3AjcB3h1jK+RR7RJfY3tDQ/pn+usrDZv9JMWgdNac8mCaiGpJeCtwKbD/gD3LEiJI9gohhJOnd5fn6zwO+BHwnIRAjXYIgYnh9BLgf+BXFmUx/29lyIjYvh4YiImouewQRETW3bacL2FLjx4/35MmTO11GRMSocuONNz5gu+kFhKMuCCZPnszSpUs33zEiIp4k6TeDzcuhoYiImksQRETUXIIgIqLmEgQRETWXIIiIqLlRd9ZQRETdLFjWx6mLV3Lv2nXsPm4s82ZNY86MCcO2/ARBRMQItmBZH8dftpx1T2wEoG/tOo6/bDnAsIVBDg1FRIxgpy5e+WQI9Fv3xEZOXbxy2NaRIIiIGMHuXbtui9q3RoIgImIE233c2C1q3xoZI+igqgeAIrpNHX9n5s2a9rQxAoCxY3qYN2v4Hi6XIOiQdgwARXSTuv7O9G/bpy+9hfUbNzGhggAcdc8jmDlzprvhpnOvP+VK+poc49uuZxtmTBrX/oIiRrhld69l/cZNz2ivy+/Mbfc9wvTdduaij+y/Ve+XdKPtmc3mZYygQwYb6Gn2gx4Rg/9u1OV3ZvpuOzN7n2r2fGp7aKjTxxp3Hze26R7BhHFjtzrxI7rZYHvR+Z159mq5R9B/rLFv7TrMU8caFyzra1sN82ZNY+yYnqe1DfcAUEQ3ye9MdWq5RzDYBRqfvvQWLrjh7rbVsfu4HbhzzWMYKhkAiugm/b8bdTtrqB1qGQQj5fj8+B23Z/yO2zN7nwkctd+ktq47YjSaM2NC/vBXoNIgkHQwcDrQA5xl+5QB8ycB5wLjyj7H2V5UZU2Q4/MREY0qGyOQ1APMBw4BpgNHSpo+oNvngIttzwCOAL5aVT2NcqwxIuIpVQ4W7wussn2n7fXAhcDsAX0M7Fy+3gW4t8J6njRnxgT+5T0vZ7ueYvMnjBvLv7zn5dnljIhaqvLQ0ATgnobp1cB+A/qcCPxQ0seB5wJvqbCep5kzY8KTA8M5HBQRddbp00ePBM6xvQfwduCbkp5Rk6S5kpZKWrpmzZq2FxkR0c2qDII+YGLD9B5lW6O/AS4GsH0dsAMwfuCCbJ9he6btmb29vRWVGxFRT1UGwRJgqqQpkrajGAxeOKDP3cBfAEh6KUUQ5CN/REQbVRYEtjcAxwCLgdspzg5aIekkSYeW3T4FfFjSzcAFwAc82u6CFxExylV6HUF5TcCiAW0nNLy+DXh9lTVERERrnR4sjoiIDksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzCYKIiJpLEERE1FyCICKi5hIEERE1lyCIiKi5BEFERM0lCCIiai5BEBFRcwmCiIiaSxBERNRcgiAiouYSBBERNZcgiIiouQRBRETNJQgiImouQRARUXMJgoiImksQRETUXKVBIOlgSSslrZJ0XJP5X5Z0U/l1h6S1VdYTERHPtG1VC5bUA8wH3gqsBpZIWmj7tv4+tj/Z0P/jwIyq6omIiOaq3CPYF1hl+07b64ELgdkt+h8JXFBhPRER0USVQTABuKdhenXZ9gyS9gSmAFcOMn+upKWSlq5Zs2bYC42IqLORMlh8BHCp7Y3NZto+w/ZM2zN7e3vbXFpERHerMgj6gIkN03uUbc0cQQ4LRUR0RJVBsASYKmmKpO0o/tgvHNhJ0kuA5wHXVVhLREQMorIgsL0BOAZYDNwOXGx7haSTJB3a0PUI4ELbrqqWiIgYXGWnjwLYXgQsGtB2woDpE6usodGCZX2cungl965dx+7jxrLDmG0Yv+P27Vp9RMSIVGkQjCQLlvVx/GXLWfdEMR7dt3Yd26jDRUVEjAAj5ayhyp26eOWTIdBvk+GeB9d1qKKIiJGhNkFw79rmf/DXb9zU5koiIkaW2gTB7uPGNm2fMEh7RERd1CYI5s2axtgxPU9rGzumh3mzpnWoooiIkaE2g8VzZhR3t/j0pbewfuMmJowby7xZ055sj4ioq9oEARRhcMENdwNw0Uf273A1EREjQ20ODUVERHMJgoiImksQRETUXIIgIqLmEgQRETWXIIiIqLkEQUREzSUIIiJqLkEQEVFzLYNA0s6S/rxJ+yuqKykiItpp0CCQdDjwS+BbklZIek3D7HOqLiwiItqj1R7BZ4FX294HOBr4pqR3l/PybK+IiC7R6qZzPbbvA7B9g6QDge9KmgjkQfMREV2i1R7Bo43jA2UoHADMBvauuK6IiGiTVnsEf8uAQ0C2H5V0MHB4pVVFRETbDLpHYPtm4NeSrhrQ/oTt8yqvLCIi2qLl6aO2NwKbJO3SpnoiIqLNhvKEsj8AyyVdATzW32j77yurKiIi2mYoQXBZ+bXFyvGE04Ee4CzbpzTpczhwIsWZSDfbPmpr1hUREVtns0Fg+9ytWbCkHmA+8FZgNbBE0kLbtzX0mQocD7ze9kOSXrA164qIiK1X5b2G9gVW2b7T9nrgQopTTxt9GJhv+yEA2/dXWE9ERDRRZRBMAO5pmF5dtjV6MfBiSddI+nl5KOkZJM2VtFTS0jVr1lRUbkREPXX67qPbAlMpLlQ7EjhT0riBnWyfYXum7Zm9vb3trTAiost
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<Figure size 432x288 with 1 Axes>"
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "needs_background": "light"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "display_data"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import numpy as np\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.title('Learning Curve')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.xlabel('Wall Clock Time (s)')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.ylabel('Validation r2')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.scatter(time_history, 1 - np.array(valid_loss_history))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.step(time_history, 1 - np.array(best_valid_loss_history), where='post')\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "plt.show()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 3. Comparison with alternatives\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### FLAML's accuracy"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 13,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "flaml (4min) r2 = 0.8522136092023422\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('flaml (4min) r2', '=', 1 - sklearn_metric_loss_score('r2', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Default LightGBM"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 14,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from lightgbm import LGBMRegressor\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "lgbm = LGBMRegressor()"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 15,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "data": {
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/html": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ],
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "text/plain": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								       "LGBMRegressor()"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "execution_count": 15,
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								     "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "execute_result"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "lgbm.fit(X_train, y_train)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 16,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "default lgbm r2 = 0.8296179648694404\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = lgbm.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('default lgbm r2', '=', 1 - sklearn_metric_loss_score('r2', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Optuna LightGBM Tuner"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 17,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2022-06-24 04:45:42 +03:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "# %pip install optuna==2.8.0"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 18,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from sklearn.model_selection import train_test_split\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "train_x, val_x, train_y, val_y = train_test_split(X_train, y_train, test_size=0.1)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import optuna.integration.lightgbm as lgb\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "dtrain = lgb.Dataset(train_x, label=train_y)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "dval = lgb.Dataset(val_x, label=val_y)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "params = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"objective\": \"regression\",\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"metric\": \"regression\",\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"verbosity\": -1,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "}"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 19,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "outputPrepend"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "\u001b[32m[I 2022-07-01 15:26:25,531]\u001b[0m A new study created in memory with name: no-name-0bd516fd-ed41-4e00-874e-ff99ff30eb94\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: inf:   0%|          | 0/7 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/lightgbm/engine.py:239: UserWarning: 'verbose_eval' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "  _log_warning(\"'verbose_eval' argument is deprecated and will be removed in a future release of LightGBM. \"\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2232348512.135204:  14%|#4        | 1/7 [00:01<00:11,  1.99s/it]\u001b[32m[I 2022-07-01 15:26:27,531]\u001b[0m Trial 0 finished with value: 2232348512.135204 and parameters: {'feature_fraction': 0.8}. Best is trial 0 with value: 2232348512.135204.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357:  29%|##8       | 2/7 [00:03<00:09,  1.90s/it]\u001b[32m[I 2022-07-01 15:26:29,373]\u001b[0m Trial 1 finished with value: 2219902031.2183566 and parameters: {'feature_fraction': 0.8999999999999999}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357:  43%|####2     | 3/7 [00:05<00:07,  1.82s/it]\u001b[32m[I 2022-07-01 15:26:31,092]\u001b[0m Trial 2 finished with value: 2232348512.135204 and parameters: {'feature_fraction': 0.7}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357:  57%|#####7    | 4/7 [00:07<00:05,  1.84s/it]\u001b[32m[I 2022-07-01 15:26:32,964]\u001b[0m Trial 3 finished with value: 2296500828.163134 and parameters: {'feature_fraction': 1.0}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357:  71%|#######1  | 5/7 [00:09<00:03,  1.76s/it]\u001b[32m[I 2022-07-01 15:26:34,581]\u001b[0m Trial 4 finished with value: 2310469779.1515803 and parameters: {'feature_fraction': 0.4}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357:  86%|########5 | 6/7 [00:10<00:01,  1.72s/it]\u001b[32m[I 2022-07-01 15:26:36,239]\u001b[0m Trial 5 finished with value: 2278468688.4447093 and parameters: {'feature_fraction': 0.6}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357: 100%|##########| 7/7 [00:12<00:00,  1.73s/it]\u001b[32m[I 2022-07-01 15:26:37,970]\u001b[0m Trial 6 finished with value: 2245941232.289396 and parameters: {'feature_fraction': 0.5}. Best is trial 1 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction, val_score: 2219902031.218357: 100%|##########| 7/7 [00:12<00:00,  1.78s/it]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:   5%|5         | 1/20 [00:03<01:04,  3.40s/it]\u001b[32m[I 2022-07-01 15:26:41,376]\u001b[0m Trial 7 finished with value: 2249765532.297114 and parameters: {'num_leaves': 76}. Best is trial 7 with value: 2249765532.297114.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  10%|#         | 2/20 [00:13<02:15,  7.52s/it]\u001b[32m[I 2022-07-01 15:26:51,786]\u001b[0m Trial 8 finished with value: 2255051289.511019 and parameters: {'num_leaves': 248}. Best is trial 7 with value: 2249765532.297114.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  15%|#5        | 3/20 [00:24<02:29,  8.81s/it]\u001b[32m[I 2022-07-01 15:27:02,129]\u001b[0m Trial 9 finished with value: 2255051289.511019 and parameters: {'num_leaves': 248}. Best is trial 7 with value: 2249765532.297114.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  20%|##        | 4/20 [00:27<01:43,  6.50s/it]\u001b[32m[I 2022-07-01 15:27:05,085]\u001b[0m Trial 10 finished with value: 2230498327.6313143 and parameters: {'num_leaves': 64}. Best is trial 10 with value: 2230498327.6313143.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  25%|##5       | 5/20 [00:28<01:12,  4.83s/it]\u001b[32m[I 2022-07-01 15:27:06,966]\u001b[0m Trial 11 finished with value: 2219902031.2183566 and parameters: {'num_leaves': 31}. Best is trial 11 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  30%|###       | 6/20 [00:37<01:23,  5.98s/it]\u001b[32m[I 2022-07-01 15:27:15,159]\u001b[0m Trial 12 finished with value: 2239709106.0440993 and parameters: {'num_leaves': 196}. Best is trial 11 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  35%|###5      | 7/20 [00:44<01:21,  6.29s/it]\u001b[32m[I 2022-07-01 15:27:22,107]\u001b[0m Trial 13 finished with value: 2258349161.4246354 and parameters: {'num_leaves': 162}. Best is trial 11 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2219902031.218357:  40%|####      | 8/20 [00:50<01:17,  6.46s/it]\u001b[32m[I 2022-07-01 15:27:28,935]\u001b[0m Trial 14 finished with value: 2238535970.718681 and parameters: {'num_leaves': 170}. Best is trial 11 with value: 2219902031.2183566.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2218643598.323591:  45%|####5     | 9/20 [01:00<01:22,  7.50s/it]\u001b[32m[I 2022-07-01 15:27:38,719]\u001b[0m Trial 15 finished with value: 2218643598.323591 and parameters: {'num_leaves': 233}. Best is trial 15 with value: 2218643598.323591.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2218643598.323591:  50%|#####     | 10/20 [01:09<01:19,  8.00s/it]\u001b[32m[I 2022-07-01 15:27:47,820]\u001b[0m Trial 16 finished with value: 2251217311.350468 and parameters: {'num_leaves': 216}. Best is trial 15 with value: 2218643598.323591.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2218643598.323591:  55%|#####5    | 11/20 [01:14<01:02,  6.90s/it]\u001b[32m[I 2022-07-01 15:27:52,224]\u001b[0m Trial 17 finished with value: 2257362003.048632 and parameters: {'num_leaves': 97}. Best is trial 15 with value: 2218643598.323591.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  60%|######    | 12/20 [01:15<00:42,  5.33s/it]\u001b[32m[I 2022-07-01 15:27:53,959]\u001b[0m Trial 18 finished with value: 2201353666.137075 and parameters: {'num_leaves': 27}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  65%|######5   | 13/20 [01:20<00:36,  5.19s/it]\u001b[32m[I 2022-07-01 15:27:58,830]\u001b[0m Trial 19 finished with value: 2208967225.5510316 and parameters: {'num_leaves': 120}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  70%|#######   | 14/20 [01:21<00:23,  3.88s/it]\u001b[32m[I 2022-07-01 15:27:59,681]\u001b[0m Trial 20 finished with value: 2423352668.1802897 and parameters: {'num_leaves': 6}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  75%|#######5  | 15/20 [01:26<00:21,  4.28s/it]\u001b[32m[I 2022-07-01 15:28:04,892]\u001b[0m Trial 21 finished with value: 2232470240.5257387 and parameters: {'num_leaves': 123}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  80%|########  | 16/20 [01:28<00:14,  3.57s/it]\u001b[32m[I 2022-07-01 15:28:06,827]\u001b[0m Trial 22 finished with value: 2220349578.978886 and parameters: {'num_leaves': 33}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  85%|########5 | 17/20 [01:34<00:12,  4.12s/it]\u001b[32m[I 2022-07-01 15:28:12,204]\u001b[0m Trial 23 finished with value: 2238019145.854743 and parameters: {'num_leaves': 126}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  90%|######### | 18/20 [01:35<00:06,  3.29s/it]\u001b[32m[I 2022-07-01 15:28:13,573]\u001b[0m Trial 24 finished with value: 2241529396.314549 and parameters: {'num_leaves': 16}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2201353666.137075:  95%|#########5| 19/20 [01:38<00:03,  3.32s/it]\u001b[32m[I 2022-07-01 15:28:16,946]\u001b[0m Trial 25 finished with value: 2223786741.955245 and parameters: {'num_leaves': 71}. Best is trial 18 with value: 2201353666.137075.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2199305116.477652: 100%|##########| 20/20 [01:45<00:00,  4.28s/it]\u001b[32m[I 2022-07-01 15:28:23,466]\u001b[0m Trial 26 finished with value: 2199305116.4776516 and parameters: {'num_leaves': 154}. Best is trial 26 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "num_leaves, val_score: 2199305116.477652: 100%|##########| 20/20 [01:45<00:00,  5.27s/it]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  10%|#         | 1/10 [00:06<01:01,  6.83s/it]\u001b[32m[I 2022-07-01 15:28:30,310]\u001b[0m Trial 27 finished with value: 2306928064.5453434 and parameters: {'bagging_fraction': 0.7585165645006501, 'bagging_freq': 1}. Best is trial 27 with value: 2306928064.5453434.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  20%|##        | 2/10 [00:15<01:03,  7.88s/it]\u001b[32m[I 2022-07-01 15:28:38,917]\u001b[0m Trial 28 finished with value: 2322722013.504575 and parameters: {'bagging_fraction': 0.6242273851784387, 'bagging_freq': 6}. Best is trial 27 with value: 2306928064.5453434.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  30%|###       | 3/10 [00:23<00:56,  8.05s/it]\u001b[32m[I 2022-07-01 15:28:47,173]\u001b[0m Trial 29 finished with value: 2367680138.6985345 and parameters: {'bagging_fraction': 0.7565396640524931, 'bagging_freq': 6}. Best is trial 27 with value: 2306928064.5453434.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  40%|####      | 4/10 [00:32<00:49,  8.19s/it]\u001b[32m[I 2022-07-01 15:28:55,577]\u001b[0m Trial 30 finished with value: 2344148688.917165 and parameters: {'bagging_fraction': 0.6821211318183384, 'bagging_freq': 2}. Best is trial 27 with value: 2306928064.5453434.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  50%|#####     | 5/10 [00:40<00:42,  8.40s/it]\u001b[32m[I 2022-07-01 15:29:04,363]\u001b[0m Trial 31 finished with value: 2416425410.5129323 and parameters: {'bagging_fraction': 0.568310870120601, 'bagging_freq': 6}. Best is trial 27 with value: 2306928064.5453434.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  60%|######    | 6/10 [00:48<00:32,  8.22s/it]\u001b[32m[I 2022-07-01 15:29:12,230]\u001b[0m Trial 32 finished with value: 2251131150.014874 and parameters: {'bagging_fraction': 0.9764916567565476, 'bagging_freq': 4}. Best is trial 32 with value: 2251131150.014874.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  70%|#######   | 7/10 [00:56<00:24,  8.18s/it]\u001b[32m[I 2022-07-01 15:29:20,311]\u001b[0m Trial 33 finished with value: 2294452797.5768037 and parameters: {'bagging_fraction': 0.9888528981063934, 'bagging_freq': 3}. Best is trial 32 with value: 2251131150.014874.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  80%|########  | 8/10 [01:04<00:16,  8.10s/it]\u001b[32m[I 2022-07-01 15:29:28,234]\u001b[0m Trial 34 finished with value: 2309129638.348013 and parameters: {'bagging_fraction': 0.8370669830657019, 'bagging_freq': 6}. Best is trial 32 with value: 2251131150.014874.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652:  90%|######### | 9/10 [01:13<00:08,  8.33s/it]\u001b[32m[I 2022-07-01 15:29:37,083]\u001b[0m Trial 35 finished with value: 2448730787.1520085 and parameters: {'bagging_fraction': 0.4658108513480458, 'bagging_freq': 2}. Best is trial 32 with value: 2251131150.014874.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652: 100%|##########| 10/10 [01:22<00:00,  8.51s/it]\u001b[32m[I 2022-07-01 15:29:45,999]\u001b[0m Trial 36 finished with value: 2419849532.9108562 and parameters: {'bagging_fraction': 0.5555911526705426, 'bagging_freq': 5}. Best is trial 32 with value: 2251131150.014874.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "bagging, val_score: 2199305116.477652: 100%|##########| 10/10 [01:22<00:00,  8.25s/it]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652:  17%|#6        | 1/6 [00:06<00:31,  6.22s/it]\u001b[32m[I 2022-07-01 15:29:52,235]\u001b[0m Trial 37 finished with value: 2199305116.4776516 and parameters: {'feature_fraction': 0.9159999999999999}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652:  33%|###3      | 2/6 [00:12<00:25,  6.39s/it]\u001b[32m[I 2022-07-01 15:29:58,747]\u001b[0m Trial 38 finished with value: 2199305116.4776516 and parameters: {'feature_fraction': 0.852}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652:  50%|#####     | 3/6 [00:19<00:19,  6.35s/it]\u001b[32m[I 2022-07-01 15:30:05,054]\u001b[0m Trial 39 finished with value: 2199305116.4776516 and parameters: {'feature_fraction': 0.82}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652:  67%|######6   | 4/6 [00:25<00:12,  6.45s/it]\u001b[32m[I 2022-07-01 15:30:11,657]\u001b[0m Trial 40 finished with value: 2199305116.4776516 and parameters: {'feature_fraction': 0.8839999999999999}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652:  83%|########3 | 5/6 [00:32<00:06,  6.59s/it]\u001b[32m[I 2022-07-01 15:30:18,484]\u001b[0m Trial 41 finished with value: 2339309140.8117876 and parameters: {'feature_fraction': 0.948}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652: 100%|##########| 6/6 [00:39<00:00,  6.60s/it]\u001b[32m[I 2022-07-01 15:30:25,101]\u001b[0m Trial 42 finished with value: 2339309140.8117876 and parameters: {'feature_fraction': 0.9799999999999999}. Best is trial 37 with value: 2199305116.4776516.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "feature_fraction_stage2, val_score: 2199305116.477652: 100%|##########| 6/6 [00:39<00:00,  6.52s/it]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:   5%|5         | 1/20 [00:06<02:08,  6.78s/it]\u001b[32m[I 2022-07-01 15:30:31,883]\u001b[0m Trial 43 finished with value: 2199305078.6317477 and parameters: {'lambda_l1': 3.456991981744869e-07, 'lambda_l2': 1.3909176882215133e-05}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  10%|#         | 2/20 [00:13<02:04,  6.92s/it]\u001b[32m[I 2022-07-01 15:30:38,911]\u001b[0m Trial 44 finished with value: 2227215910.417912 and parameters: {'lambda_l1': 5.932065146744108e-08, 'lambda_l2': 0.012346257652390797}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  15%|#5        | 3/20 [00:20<01:56,  6.87s/it]\u001b[32m[I 2022-07-01 15:30:45,727]\u001b[0m Trial 45 finished with value: 2208093711.3934827 and parameters: {'lambda_l1': 6.222982571088105e-07, 'lambda_l2': 0.005657569746743592}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  20%|##        | 4/20 [00:27<01:49,  6.82s/it]\u001b[32m[I 2022-07-01 15:30:52,458]\u001b[0m Trial 46 finished with value: 2238300649.509333 and parameters: {'lambda_l1': 0.028876756140130917, 'lambda_l2': 0.03474442715862468}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  25%|##5       | 5/20 [00:34<01:44,  6.94s/it]\u001b[32m[I 2022-07-01 15:30:59,622]\u001b[0m Trial 47 finished with value: 2230579851.4348216 and parameters: {'lambda_l1': 0.6408435792442605, 'lambda_l2': 7.923471799415313}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  30%|###       | 6/20 [00:41<01:36,  6.91s/it]\u001b[32m[I 2022-07-01 15:31:06,467]\u001b[0m Trial 48 finished with value: 2229105124.7696505 and parameters: {'lambda_l1': 0.010722071300503344, 'lambda_l2': 1.2031073824055891}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  35%|###5      | 7/20 [00:48<01:29,  6.91s/it]\u001b[32m[I 2022-07-01 15:31:13,376]\u001b[0m Trial 49 finished with value: 2237355622.9231133 and parameters: {'lambda_l1': 0.15961712656996224, 'lambda_l2': 1.0178650762499495}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  40%|####      | 8/20 [00:55<01:22,  6.90s/it]\u001b[32m[I 2022-07-01 15:31:20,249]\u001b[0m Trial 50 finished with value: 2199305108.0201645 and parameters: {'lambda_l1': 0.0005450461819794682, 'lambda_l2': 2.928079900278101e-06}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  45%|####5     | 9/20 [01:01<01:15,  6.83s/it]\u001b[32m[I 2022-07-01 15:31:26,931]\u001b[0m Trial 51 finished with value: 2199305107.588573 and parameters: {'lambda_l1': 0.019082135224974688, 'lambda_l2': 2.215319953261056e-08}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199305078.631748:  50%|#####     | 10/20 [01:08<01:07,  6.80s/it]\u001b[32m[I 2022-07-01 15:31:33,658]\u001b[0m Trial 52 finished with value: 2245666778.532941 and parameters: {'lambda_l1': 5.414308234389909, 'lambda_l2': 1.2520783411460403e-06}. Best is trial 43 with value: 2199305078.6317477.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199237747.117429:  55%|#####5    | 11/20 [01:15<01:01,  6.79s/it]\u001b[32m[I 2022-07-01 15:31:40,415]\u001b[0m Trial 53 finished with value: 2199237747.1174293 and parameters: {'lambda_l1': 8.100486192199182e-06, 'lambda_l2': 4.641583659119779e-05}. Best is trial 53 with value: 2199237747.1174293.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2199237747.117429:  60%|######    | 12/20 [01:22<00:54,  6.77s/it]\u001b[32m[I 2022-07-01 15:31:47,153]\u001b[0m Trial 54 finished with value: 2199305057.642786 and parameters: {'lambda_l1': 3.6631417833294185e-06, 'lambda_l2': 2.1348145216053757e-05}. Best is trial 53 with value: 2199237747.1174293.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  65%|######5   | 13/20 [01:28<00:47,  6.81s/it]\u001b[32m[I 2022-07-01 15:31:54,065]\u001b[0m Trial 55 finished with value: 2197186937.9154205 and parameters: {'lambda_l1': 8.10639397388401e-06, 'lambda_l2': 0.00011673870071542667}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  70%|#######   | 14/20 [01:35<00:40,  6.74s/it]\u001b[32m[I 2022-07-01 15:32:00,643]\u001b[0m Trial 56 finished with value: 2225251999.875691 and parameters: {'lambda_l1': 1.7659550523446347e-05, 'lambda_l2': 0.0005366592911597499}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  75%|#######5  | 15/20 [01:42<00:33,  6.78s/it]\u001b[32m[I 2022-07-01 15:32:07,509]\u001b[0m Trial 57 finished with value: 2199305115.965746 and parameters: {'lambda_l1': 0.00011988368737569814, 'lambda_l2': 2.547255235003035e-07}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  80%|########  | 16/20 [01:49<00:27,  6.82s/it]\u001b[32m[I 2022-07-01 15:32:14,428]\u001b[0m Trial 58 finished with value: 2199272523.4245095 and parameters: {'lambda_l1': 1.584428775539112e-08, 'lambda_l2': 0.00019822993735694197}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  85%|########5 | 17/20 [01:56<00:20,  6.80s/it]\u001b[32m[I 2022-07-01 15:32:21,194]\u001b[0m Trial 59 finished with value: 2208977643.7865806 and parameters: {'lambda_l1': 0.00022730715336215045, 'lambda_l2': 0.000349248360832954}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  90%|######### | 18/20 [02:02<00:13,  6.77s/it]\u001b[32m[I 2022-07-01 15:32:27,887]\u001b[0m Trial 60 finished with value: 2199305116.323484 and parameters: {'lambda_l1': 7.693013959177693e-06, 'lambda_l2': 4.173548491660109e-08}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2197186937.915421:  95%|#########5| 19/20 [02:09<00:06,  6.78s/it]\u001b[32m[I 2022-07-01 15:32:34,692]\u001b[0m Trial 61 finished with value: 2199305035.1400375 and parameters: {'lambda_l1': 0.0012748791329935912, 'lambda_l2': 2.971311275786321e-05}. Best is trial 55 with value: 2197186937.9154205.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2196893501.218637: 100%|##########| 20/20 [02:16<00:00,  6.76s/it]\u001b[32m[I 2022-07-01 15:32:41,415]\u001b[0m Trial 62 finished with value: 2196893501.2186375 and parameters: {'lambda_l1': 2.4953626772316295e-05, 'lambda_l2': 0.00208420065729694}. Best is trial 62 with value: 2196893501.2186375.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "regularization_factors, val_score: 2196893501.218637: 100%|##########| 20/20 [02:16<00:00,  6.82s/it]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637:  20%|##        | 1/5 [00:05<00:21,  5.42s/it]\u001b[32m[I 2022-07-01 15:32:46,844]\u001b[0m Trial 63 finished with value: 2224986582.6364565 and parameters: {'min_child_samples': 5}. Best is trial 63 with value: 2224986582.6364565.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637:  40%|####      | 2/5 [00:14<00:22,  7.58s/it]\u001b[32m[I 2022-07-01 15:32:55,933]\u001b[0m Trial 64 finished with value: 2327642703.7542973 and parameters: {'min_child_samples': 50}. Best is trial 63 with value: 2224986582.6364565.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637:  60%|######    | 3/5 [00:21<00:14,  7.27s/it]\u001b[32m[I 2022-07-01 15:33:02,826]\u001b[0m Trial 65 finished with value: 2339874099.256145 and parameters: {'min_child_samples': 100}. Best is trial 63 with value: 2224986582.6364565.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637:  80%|########  | 4/5 [00:27<00:06,  6.68s/it]\u001b[32m[I 2022-07-01 15:33:08,597]\u001b[0m Trial 66 finished with value: 2238985187.2367454 and parameters: {'min_child_samples': 10}. Best is trial 63 with value: 2224986582.6364565.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637: 100%|##########| 5/5 [00:34<00:00,  6.96s/it]\u001b[32m[I 2022-07-01 15:33:16,067]\u001b[0m Trial 67 finished with value: 2256871995.7934694 and parameters: {'min_child_samples': 25}. Best is trial 63 with value: 2224986582.6364565.\u001b[0m\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "min_data_in_leaf, val_score: 2196893501.218637: 100%|##########| 5/5 [00:34<00:00,  6.93s/it]"
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "CPU times: user 6min 30s, sys: 17 s, total: 6min 47s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Wall time: 6min 50s\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "%%time\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "model = lgb.train(params, dtrain, valid_sets=[dtrain, dval], verbose_eval=10000)        \n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": []
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 20,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Optuna LightGBM Tuner r2 = 0.8429583826070053\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = model.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Optuna LightGBM Tuner r2', '=', 1 - sklearn_metric_loss_score('r2', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## 4. Add a customized LightGBM learner in FLAML\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "The native API of LightGBM allows one to specify a custom objective function in the model constructor. You can easily enable it by adding a customized LightGBM learner in FLAML. In the following example, we show how to add such a customized LightGBM learner with a custom objective function."
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Create a customized LightGBM learner with a custom objective function"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 21,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import numpy as np \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' define your customized objective function '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "def my_loss_obj(y_true, y_pred):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    c = 0.5\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    residual = y_pred - y_true\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    grad = c * residual /(np.abs(residual) + c)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    hess = c ** 2 / (np.abs(residual) + c) ** 2\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    # rmse grad and hess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    grad_rmse = residual\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    hess_rmse = 1.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    # mae grad and hess\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    grad_mae = np.array(residual)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    grad_mae[grad_mae > 0] = 1.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    grad_mae[grad_mae <= 0] = -1.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    hess_mae = 1.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    coef = [0.4, 0.3, 0.3]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    return coef[0] * grad + coef[1] * grad_rmse + coef[2] * grad_mae, \\\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        coef[0] * hess + coef[1] * hess_rmse + coef[2] * hess_mae\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.model import LGBMEstimator\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "''' create a customized LightGBM learner class with your objective function '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "class MyLGBM(LGBMEstimator):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    '''LGBMEstimator with my_loss_obj as the objective function\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    '''\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    def __init__(self, **config):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        super().__init__(objective=my_loss_obj, **config)"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "### Add the customized learner in FLAML"
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 22,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stderr",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2427} INFO - task = regression\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2429} INFO - Data split method: uniform\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2432} INFO - Evaluation method: cv\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2501} INFO - Minimizing error metric: 1-r2\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2641} INFO - List of ML learners in AutoML Run: ['my_lgbm']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2933} INFO - iteration 0, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {3061} INFO - Estimated sufficient time budget=1586s. Estimated necessary time budget=2s.\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {3108} INFO -  at 0.2s,\testimator my_lgbm's best error=2.9883,\tbest estimator my_lgbm's best error=2.9883\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:17] {2933} INFO - iteration 1, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {3108} INFO -  at 0.4s,\testimator my_lgbm's best error=2.9883,\tbest estimator my_lgbm's best error=2.9883\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {2933} INFO - iteration 2, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {3108} INFO -  at 0.6s,\testimator my_lgbm's best error=1.7086,\tbest estimator my_lgbm's best error=1.7086\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {2933} INFO - iteration 3, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {3108} INFO -  at 0.8s,\testimator my_lgbm's best error=0.3474,\tbest estimator my_lgbm's best error=0.3474\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {2933} INFO - iteration 4, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {3108} INFO -  at 1.0s,\testimator my_lgbm's best error=0.3474,\tbest estimator my_lgbm's best error=0.3474\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {2933} INFO - iteration 5, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {3108} INFO -  at 1.2s,\testimator my_lgbm's best error=0.3015,\tbest estimator my_lgbm's best error=0.3015\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:18] {2933} INFO - iteration 6, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {3108} INFO -  at 1.4s,\testimator my_lgbm's best error=0.3015,\tbest estimator my_lgbm's best error=0.3015\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {2933} INFO - iteration 7, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {3108} INFO -  at 1.6s,\testimator my_lgbm's best error=0.3015,\tbest estimator my_lgbm's best error=0.3015\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {2933} INFO - iteration 8, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {3108} INFO -  at 1.9s,\testimator my_lgbm's best error=0.2721,\tbest estimator my_lgbm's best error=0.2721\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {2933} INFO - iteration 9, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {3108} INFO -  at 2.2s,\testimator my_lgbm's best error=0.2721,\tbest estimator my_lgbm's best error=0.2721\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:19] {2933} INFO - iteration 10, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:21] {3108} INFO -  at 3.5s,\testimator my_lgbm's best error=0.1833,\tbest estimator my_lgbm's best error=0.1833\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:21] {2933} INFO - iteration 11, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:23] {3108} INFO -  at 5.2s,\testimator my_lgbm's best error=0.1833,\tbest estimator my_lgbm's best error=0.1833\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:23] {2933} INFO - iteration 12, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:24] {3108} INFO -  at 6.3s,\testimator my_lgbm's best error=0.1833,\tbest estimator my_lgbm's best error=0.1833\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:24] {2933} INFO - iteration 13, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:25] {3108} INFO -  at 7.8s,\testimator my_lgbm's best error=0.1833,\tbest estimator my_lgbm's best error=0.1833\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:25] {2933} INFO - iteration 14, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:27] {3108} INFO -  at 9.2s,\testimator my_lgbm's best error=0.1833,\tbest estimator my_lgbm's best error=0.1833\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:27] {2933} INFO - iteration 15, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:28] {3108} INFO -  at 11.0s,\testimator my_lgbm's best error=0.1762,\tbest estimator my_lgbm's best error=0.1762\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:28] {2933} INFO - iteration 16, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:30] {3108} INFO -  at 12.3s,\testimator my_lgbm's best error=0.1762,\tbest estimator my_lgbm's best error=0.1762\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:30] {2933} INFO - iteration 17, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:36] {3108} INFO -  at 19.0s,\testimator my_lgbm's best error=0.1760,\tbest estimator my_lgbm's best error=0.1760\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:36] {2933} INFO - iteration 18, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:38] {3108} INFO -  at 20.8s,\testimator my_lgbm's best error=0.1760,\tbest estimator my_lgbm's best error=0.1760\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:38] {2933} INFO - iteration 19, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:40] {3108} INFO -  at 23.0s,\testimator my_lgbm's best error=0.1760,\tbest estimator my_lgbm's best error=0.1760\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:40] {2933} INFO - iteration 20, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:54] {3108} INFO -  at 36.6s,\testimator my_lgbm's best error=0.1760,\tbest estimator my_lgbm's best error=0.1760\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:33:54] {2933} INFO - iteration 21, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:00] {3108} INFO -  at 43.2s,\testimator my_lgbm's best error=0.1760,\tbest estimator my_lgbm's best error=0.1760\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:00] {2933} INFO - iteration 22, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:04] {3108} INFO -  at 47.1s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:04] {2933} INFO - iteration 23, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:08] {3108} INFO -  at 50.6s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:08] {2933} INFO - iteration 24, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:15] {3108} INFO -  at 57.5s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:15] {2933} INFO - iteration 25, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:33] {3108} INFO -  at 76.2s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:33] {2933} INFO - iteration 26, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:35] {3108} INFO -  at 77.6s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:35] {2933} INFO - iteration 27, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:45] {3108} INFO -  at 87.9s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:45] {2933} INFO - iteration 28, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:47] {3108} INFO -  at 89.7s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:47] {2933} INFO - iteration 29, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:48] {3108} INFO -  at 90.6s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:34:48] {2933} INFO - iteration 30, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:16] {3108} INFO -  at 118.7s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:16] {2933} INFO - iteration 31, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:19] {3108} INFO -  at 121.6s,\testimator my_lgbm's best error=0.1706,\tbest estimator my_lgbm's best error=0.1706\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:19] {2933} INFO - iteration 32, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:26] {3108} INFO -  at 128.9s,\testimator my_lgbm's best error=0.1632,\tbest estimator my_lgbm's best error=0.1632\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:26] {2933} INFO - iteration 33, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:33] {3108} INFO -  at 135.2s,\testimator my_lgbm's best error=0.1632,\tbest estimator my_lgbm's best error=0.1632\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:33] {2933} INFO - iteration 34, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:37] {3108} INFO -  at 139.6s,\testimator my_lgbm's best error=0.1632,\tbest estimator my_lgbm's best error=0.1632\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:37] {2933} INFO - iteration 35, current learner my_lgbm\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:49] {3108} INFO -  at 151.6s,\testimator my_lgbm's best error=0.1632,\tbest estimator my_lgbm's best error=0.1632\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:50] {3372} INFO - retrain my_lgbm for 1.5s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:50] {3379} INFO - retrained model: LGBMRegressor(colsample_bytree=0.8422311526890249,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "              learning_rate=0.4130805075333333, max_bin=1023,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "              min_child_samples=10, n_estimators=95, num_leaves=221,\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "              objective=<function my_loss_obj at 0x7fcd8ac7e940>,\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "              reg_alpha=0.007704104902643932, reg_lambda=0.0031517673595496476,\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "              verbose=-1)\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:50] {2672} INFO - fit succeeded\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:50] {2673} INFO - Time taken to find the best model: 128.89934134483337\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "[flaml.automl: 07-01 15:35:50] {2684} WARNING - Time taken to find the best model is 86% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl = AutoML()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.add_learner(learner_name='my_lgbm', learner_class=MyLGBM)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "settings = {\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"time_budget\": 150,  # total running time in seconds\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"metric\": 'r2',  # primary metrics for regression can be chosen from: ['mae','mse','r2']\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"estimator_list\": ['my_lgbm',],  # list of ML learners; we tune lightgbm in this example\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"task\": 'regression',  # task type    \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    \"log_file_name\": 'houses_experiment_my_lgbm.log',  # flaml log file\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "}\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "automl.fit(X_train=X_train, y_train=y_train, **settings)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-04-10 21:14:28 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 23,
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tags": []
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Best hyperparmeter config: {'n_estimators': 95, 'num_leaves': 221, 'min_child_samples': 10, 'learning_rate': 0.4130805075333333, 'log_max_bin': 10, 'colsample_bytree': 0.8422311526890249, 'reg_alpha': 0.007704104902643932, 'reg_lambda': 0.0031517673595496476}\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Best r2 on validation data: 0.8368\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "Training duration of best run: 1.508 s\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Predicted labels [161485.59767093 248585.87889042 157837.93378106 ... 184356.07034452\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-10-08 16:09:43 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      " 223247.80995858 259281.61167122]\n",
							 
						 
					
						
							
								
									
										
										
										
											2021-07-24 20:10:43 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "True labels 14740    136900.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "10101    241300.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "20566    200700.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "2670      72500.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "15709    460000.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "           ...   \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "13132    121200.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "8228     137500.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "3948     160900.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "8522     227300.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "16798    265600.0\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "Name: median_house_value, Length: 5160, dtype: float64\n",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								      "r2 = 0.842983315140684\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "mse = 2075526075.9236298\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "mae = 30102.91056064235\n"
							 
						 
					
						
							
								
									
										
										
										
											2021-05-08 02:50:50 +00:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best hyperparmeter config:', automl.best_config)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Best r2 on validation data: {0:.4g}'.format(1-automl.best_loss))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "y_pred = automl.predict(X_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('Predicted labels', y_pred)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('True labels', y_test)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "from flaml.ml import sklearn_metric_loss_score\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('r2', '=', 1 - sklearn_metric_loss_score('r2', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('mse', '=', sklearn_metric_loss_score('mse', y_pred, y_test))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print('mae', '=', sklearn_metric_loss_score('mae', y_pred, y_test))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "display_name": "Python 3.9.12 64-bit",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "language": "python",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
									
										
										
										
											2021-08-23 19:36:51 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2022-07-10 12:25:59 -07:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.9.12"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "vscode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "interpreter": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   }
							 
						 
					
						
							
								
									
										
										
										
											2021-02-22 22:10:41 -08:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 2
							 
						 
					
						
							
								
									
										
										
										
											2022-01-14 13:39:09 -08:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								}