61 lines
2.1 KiB
Python
Raw Normal View History

import os
try:
from transformers import Trainer as TFTrainer
except ImportError:
TFTrainer = object
class TrainerForAuto(TFTrainer):
def evaluate(self, eval_dataset=None):
"""
Overriding transformers.Trainer.evaluate by saving state with save_state
Args:
eval_dataset:
the dataset to be evaluated
"""
if self.eval_dataset is not None:
eval_dataloader = self.get_eval_dataloader(self.eval_dataset)
output = self.prediction_loop(eval_dataloader, description="Evaluation")
self.log(output.metrics)
ckpt_dir = self.save_state()
for key in list(output.metrics.keys()):
if key.startswith("eval_"):
output.metrics[key[5:]] = output.metrics.pop(key)
if hasattr(self, "ckpt_to_global_step"):
self.ckpt_to_metric[ckpt_dir] = output.metrics
self.ckpt_to_global_step[ckpt_dir] = self.state.global_step
else:
self.ckpt_to_global_step = {ckpt_dir: self.state.global_step}
self.ckpt_to_metric = {ckpt_dir: output.metrics}
def save_state(self):
"""
Overriding transformers.Trainer.save_state. It is only through saving
the states can best_trial.get_best_checkpoint return a non-empty value.
"""
import torch
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from ray import tune
with tune.checkpoint_dir(step=self.state.global_step) as checkpoint_dir:
self.args.output_dir = checkpoint_dir
# This is the directory name that Huggingface requires.
output_dir = os.path.join(
self.args.output_dir,
f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}",
)
self.save_model(output_dir)
torch.save(
self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")
)
torch.save(
self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")
)
return output_dir