mirror of
https://github.com/microsoft/autogen.git
synced 2025-09-06 23:07:06 +00:00
41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
![]() |
from flaml import AutoML
|
||
|
from flaml.data import load_openml_dataset
|
||
|
|
||
|
|
||
|
def _test_lexiflow():
|
||
|
|
||
|
X_train, X_test, y_train, y_test = load_openml_dataset(
|
||
|
dataset_id=179, data_dir="test/data"
|
||
|
)
|
||
|
|
||
|
lexico_objectives = {}
|
||
|
lexico_objectives["metrics"] = ["val_loss", "pred_time"]
|
||
|
lexico_objectives["tolerances"] = {"val_loss": 0.01, "pred_time": 0.0}
|
||
|
lexico_objectives["targets"] = {"val_loss": 0.0, "pred_time": 0.0}
|
||
|
lexico_objectives["modes"] = ["min", "min"]
|
||
|
|
||
|
automl = AutoML()
|
||
|
settings = {
|
||
|
"time_budget": 100,
|
||
|
"lexico_objectives": lexico_objectives,
|
||
|
"estimator_list": ["xgboost"],
|
||
|
"use_ray": True,
|
||
|
"task": "classification",
|
||
|
"max_iter": 10000000,
|
||
|
"train_time_limit": 60,
|
||
|
"verbose": 0,
|
||
|
"eval_method": "holdout",
|
||
|
"mem_thres": 128 * (1024**3),
|
||
|
"seed": 1,
|
||
|
}
|
||
|
automl.fit(X_train=X_train, y_train=y_train, X_val=X_test, y_val=y_test, **settings)
|
||
|
print(automl.predict(X_train))
|
||
|
print(automl.model)
|
||
|
print(automl.config_history)
|
||
|
print(automl.best_iteration)
|
||
|
print(automl.best_estimator)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
_test_lexiflow()
|