mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-26 18:31:36 +00:00
68 lines
4.9 KiB
Markdown
68 lines
4.9 KiB
Markdown
![]() |
# AAAI 2023 Lab Forum - LSHP2: Automated Machine Learning & Tuning with FLAML
|
|||
|
|
|||
|
## Session Information
|
|||
|
|
|||
|
**Date and Time**: February 8, 2023 at 2-6pm ET.
|
|||
|
|
|||
|
Location: Walter E. Washington Convention Center, Washington DC, USA
|
|||
|
|
|||
|
Duration: 4 hours (3.5 hours + 0.5 hour break)
|
|||
|
|
|||
|
For the most up-to-date information, see the [AAAI'23 Program Agenda](https://aaai.org/Conferences/AAAI-23/aaai23tutorials/)
|
|||
|
|
|||
|
## [Lab Forum Slides](https://1drv.ms/b/s!Ao3suATqM7n7iokCQbF7jUUYwOqGqQ?e=cMnilV)
|
|||
|
|
|||
|
## What Will You Learn?
|
|||
|
|
|||
|
- What FLAML is and how to use FLAML to
|
|||
|
- find accurate ML models with low computational resources for common ML tasks
|
|||
|
- tune hyperparameters generically
|
|||
|
- How to leverage the flexible and rich customization choices
|
|||
|
- finish the last mile for deployment
|
|||
|
- create new applications
|
|||
|
- Code examples, demos, use cases
|
|||
|
- Research & development opportunities
|
|||
|
|
|||
|
## Session Agenda
|
|||
|
|
|||
|
### **Part 1. Overview of FLAML**
|
|||
|
|
|||
|
- Overview of AutoML and FLAML
|
|||
|
- Basic usages of FLAML
|
|||
|
- Task-oriented AutoML
|
|||
|
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML)
|
|||
|
- [Notebook: A classification task with AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_classification.ipynb)
|
|||
|
- Tune User-Defined-functions with FLAML
|
|||
|
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function)
|
|||
|
- [Notebook: Tune user-defined function](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_demo.ipynb)
|
|||
|
- Zero-shot AutoML
|
|||
|
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML)
|
|||
|
- [Notebook: Zeroshot AutoML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/zeroshot_lightgbm.ipynb)
|
|||
|
- [ML.NET demo](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder)
|
|||
|
|
|||
|
Break (15m)
|
|||
|
|
|||
|
### **Part 2. Deep Dive into FLAML**
|
|||
|
- The Science Behind FLAML’s Success
|
|||
|
- [Economical hyperparameter optimization methods in FLAML](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm)
|
|||
|
- [Other research in FLAML](https://microsoft.github.io/FLAML/docs/Research)
|
|||
|
|
|||
|
- Maximize the Power of FLAML through Customization and Advanced Functionalities
|
|||
|
- [Notebook: Customize your AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/customize_your_automl_with_flaml.ipynb)
|
|||
|
- [Notebook: Further acceleration of AutoML with FLAML](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/further_acceleration_of_automl_with_flaml.ipynb)
|
|||
|
- [Notebook: Neural network model tuning with FLAML ](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_pytorch.ipynb)
|
|||
|
|
|||
|
|
|||
|
### **Part 3. New features in FLAML**
|
|||
|
- Natural language processing
|
|||
|
- [Notebook: AutoML for NLP tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_nlp.ipynb)
|
|||
|
- Time Series Forecasting
|
|||
|
- [Notebook: AutoML for Time Series Forecast tasks](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/automl_time_series_forecast.ipynb)
|
|||
|
- Targeted Hyperparameter Optimization With Lexicographic Objectives
|
|||
|
- [Documentation](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#lexicographic-objectives)
|
|||
|
- [Notebook: Find accurate and fast neural networks with lexicographic objectives](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/tune_lexicographic.ipynb)
|
|||
|
- Online AutoML
|
|||
|
- [Notebook: Online AutoML with Vowpal Wabbit](https://github.com/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial-aaai23/notebook/autovw.ipynb)
|
|||
|
- Fair AutoML
|
|||
|
### Challenges and open problems
|