mirror of
https://github.com/microsoft/autogen.git
synced 2025-07-23 17:01:35 +00:00
49 lines
3.1 KiB
Markdown
49 lines
3.1 KiB
Markdown
![]() |
# KDD 2022 Hands-on Tutorial - Automated Machine Learning & Tuning with FLAML
|
||
|
|
||
|
## Session Information
|
||
|
|
||
|
Date: August 16, 2022
|
||
|
Time: 9:30 AM ET
|
||
|
Location: 101
|
||
|
Duration: 3 hours
|
||
|
|
||
|
For the most up-to-date information, see the [SIGKDD'22 Program Agenda](https://kdd.org/kdd2022/handsOnTutorial.html)
|
||
|
|
||
|
## [Tutorial Slides](https://1drv.ms/b/s!Ao3suATqM7n7ioQF8xT8BbRdyIf_Ww?e=qQysIf)
|
||
|
|
||
|
## What Will You Learn?
|
||
|
|
||
|
- What FLAML is and how to use it to find accurate ML models with low computational resources for common machine learning tasks
|
||
|
- How to leverage the flexible and rich customization choices to:
|
||
|
- Finish the last mile for deployment
|
||
|
- Create new applications
|
||
|
- Code examples, demos, and use cases
|
||
|
- Research & development opportunities
|
||
|
|
||
|
## Session Agenda
|
||
|
|
||
|
### Part 1
|
||
|
|
||
|
- Overview of AutoML and FLAML
|
||
|
- Task-oriented AutoML with FLAML
|
||
|
- [Notebook: A classification task with AutoML](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_classification.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_classification.ipynb)
|
||
|
- [Notebook: A regression task with AuotML using LightGBM as the learner](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_lightgbm.ipynb)
|
||
|
- [ML.NET demo](https://docs.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder)
|
||
|
- Tune user defined functions with FLAML
|
||
|
- [Notebook: Basic tuning procedures and advanced tuning options](https://github.com/microsoft/FLAML/blob/tutorial/notebook/tune_demo.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/tune_demo.ipynb)
|
||
|
- [Notebook: Tune pytorch](https://github.com/microsoft/FLAML/blob/tutorial/notebook/tune_pytorch.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/tune_pytorch.ipynb)
|
||
|
- Q & A
|
||
|
|
||
|
### Part 2
|
||
|
|
||
|
- Zero-shot AutoML
|
||
|
- [Notebook: Zeroshot AutoML](https://github.com/microsoft/FLAML/blob/tutorial/notebook/zeroshot_lightgbm.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/zeroshot_lightgbm.ipynb)
|
||
|
- Time series forecasting
|
||
|
- [Notebook: AutoML for Time Series Forecast tasks](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_time_series_forecast.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_time_series_forecast.ipynb)
|
||
|
- Natural language processing
|
||
|
- [Notebook: AutoML for NLP tasks](https://github.com/microsoft/FLAML/blob/tutorial/notebook/automl_nlp.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/automl_nlp.ipynb)
|
||
|
- Online AutoML
|
||
|
- [Notebook: Online AutoML with Vowpal Wabbit](https://github.com/microsoft/FLAML/blob/tutorial/notebook/autovw.ipynb); [Open In Colab](https://colab.research.google.com/github/microsoft/FLAML/blob/tutorial/notebook/autovw.ipynb)
|
||
|
- Fair AutoML
|
||
|
- Challenges and open problems
|