"with low computational cost. It is fast and economical. The simple and lightweight design makes it easy to use and extend, such as adding new learners. FLAML can \n",
"Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
"In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default classifiers are `['lgbm', 'xgboost', 'xgb_limitdepth', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
"[flaml.automl: 03-30 21:48:57] {2105} INFO - task = classification\n",
"[flaml.automl: 03-30 21:48:57] {2107} INFO - Data split method: stratified\n",
"[flaml.automl: 03-30 21:48:57] {2111} INFO - Evaluation method: holdout\n",
"[flaml.automl: 03-30 21:48:58] {2188} INFO - Minimizing error metric: 1-accuracy\n",
"[flaml.automl: 03-30 21:48:58] {2281} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'catboost', 'xgboost', 'extra_tree', 'xgb_limitdepth', 'lrl1']\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 0, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2697} INFO - Estimated sufficient time budget=24546s. Estimated necessary time budget=603s.\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 0.7s,\testimator lgbm's best error=0.3777,\tbest estimator lgbm's best error=0.3777\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 1, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 0.8s,\testimator lgbm's best error=0.3777,\tbest estimator lgbm's best error=0.3777\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 2, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 0.9s,\testimator lgbm's best error=0.3614,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 3, current learner xgboost\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.0s,\testimator xgboost's best error=0.3787,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 4, current learner extra_tree\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.1s,\testimator extra_tree's best error=0.3892,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 5, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.3s,\testimator lgbm's best error=0.3614,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 6, current learner xgboost\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.3s,\testimator xgboost's best error=0.3787,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 7, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.4s,\testimator lgbm's best error=0.3614,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 8, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:58] {2744} INFO - at 1.6s,\testimator lgbm's best error=0.3614,\tbest estimator lgbm's best error=0.3614\n",
"[flaml.automl: 03-30 21:48:58] {2567} INFO - iteration 9, current learner xgboost\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 1.7s,\testimator xgboost's best error=0.3604,\tbest estimator xgboost's best error=0.3604\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 10, current learner xgboost\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 1.9s,\testimator xgboost's best error=0.3601,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 11, current learner extra_tree\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.0s,\testimator extra_tree's best error=0.3892,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 12, current learner extra_tree\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.1s,\testimator extra_tree's best error=0.3792,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 13, current learner rf\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.1s,\testimator rf's best error=0.3789,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 14, current learner rf\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.2s,\testimator rf's best error=0.3789,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 15, current learner rf\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.3s,\testimator rf's best error=0.3766,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 16, current learner lgbm\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.4s,\testimator lgbm's best error=0.3614,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 17, current learner extra_tree\n",
"[flaml.automl: 03-30 21:48:59] {2744} INFO - at 2.5s,\testimator extra_tree's best error=0.3792,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:48:59] {2567} INFO - iteration 18, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 2.6s,\testimator lgbm's best error=0.3614,\tbest estimator xgboost's best error=0.3601\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 19, current learner xgboost\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 2.7s,\testimator xgboost's best error=0.3594,\tbest estimator xgboost's best error=0.3594\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 20, current learner xgboost\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 2.8s,\testimator xgboost's best error=0.3594,\tbest estimator xgboost's best error=0.3594\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 21, current learner xgboost\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 2.9s,\testimator xgboost's best error=0.3594,\tbest estimator xgboost's best error=0.3594\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 22, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 3.1s,\testimator lgbm's best error=0.3614,\tbest estimator xgboost's best error=0.3594\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 23, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 3.3s,\testimator lgbm's best error=0.3550,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 24, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 3.4s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 25, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:00] {2744} INFO - at 3.5s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:00] {2567} INFO - iteration 26, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:01] {2744} INFO - at 3.7s,\testimator lgbm's best error=0.3550,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:01] {2567} INFO - iteration 27, current learner xgboost\n",
"[flaml.automl: 03-30 21:49:01] {2744} INFO - at 3.8s,\testimator xgboost's best error=0.3594,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:01] {2567} INFO - iteration 28, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:01] {2744} INFO - at 3.9s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:01] {2567} INFO - iteration 29, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:01] {2744} INFO - at 4.0s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3550\n",
"[flaml.automl: 03-30 21:49:01] {2567} INFO - iteration 30, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:01] {2744} INFO - at 4.5s,\testimator lgbm's best error=0.3545,\tbest estimator lgbm's best error=0.3545\n",
"[flaml.automl: 03-30 21:49:01] {2567} INFO - iteration 31, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:02] {2744} INFO - at 4.8s,\testimator lgbm's best error=0.3545,\tbest estimator lgbm's best error=0.3545\n",
"[flaml.automl: 03-30 21:49:02] {2567} INFO - iteration 32, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:03] {2744} INFO - at 6.1s,\testimator lgbm's best error=0.3545,\tbest estimator lgbm's best error=0.3545\n",
"[flaml.automl: 03-30 21:49:03] {2567} INFO - iteration 33, current learner catboost\n",
"[flaml.automl: 03-30 21:49:08] {2744} INFO - at 10.6s,\testimator catboost's best error=0.3587,\tbest estimator lgbm's best error=0.3545\n",
"[flaml.automl: 03-30 21:49:08] {2567} INFO - iteration 34, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:09] {2744} INFO - at 11.8s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3545\n",
"[flaml.automl: 03-30 21:49:09] {2567} INFO - iteration 35, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:10] {2744} INFO - at 13.0s,\testimator lgbm's best error=0.3536,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:10] {2567} INFO - iteration 36, current learner rf\n",
"[flaml.automl: 03-30 21:49:10] {2744} INFO - at 13.5s,\testimator rf's best error=0.3766,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:10] {2567} INFO - iteration 37, current learner extra_tree\n",
"[flaml.automl: 03-30 21:49:15] {2744} INFO - at 18.6s,\testimator extra_tree's best error=0.3792,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:15] {2567} INFO - iteration 38, current learner catboost\n",
"[flaml.automl: 03-30 21:49:17] {2744} INFO - at 20.0s,\testimator catboost's best error=0.3587,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:17] {2567} INFO - iteration 39, current learner catboost\n",
"[flaml.automl: 03-30 21:49:25] {2744} INFO - at 28.2s,\testimator catboost's best error=0.3587,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:25] {2567} INFO - iteration 40, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:28] {2744} INFO - at 30.7s,\testimator lgbm's best error=0.3536,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:28] {2567} INFO - iteration 41, current learner catboost\n",
"[flaml.automl: 03-30 21:49:36] {2744} INFO - at 38.9s,\testimator catboost's best error=0.3587,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:36] {2567} INFO - iteration 42, current learner xgboost\n",
"[flaml.automl: 03-30 21:49:37] {2744} INFO - at 40.4s,\testimator xgboost's best error=0.3594,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:37] {2567} INFO - iteration 43, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:41] {2744} INFO - at 44.3s,\testimator lgbm's best error=0.3536,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:41] {2567} INFO - iteration 44, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:49:42] {2744} INFO - at 44.7s,\testimator xgb_limitdepth's best error=0.3630,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:42] {2567} INFO - iteration 45, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:49:43] {2744} INFO - at 46.1s,\testimator xgb_limitdepth's best error=0.3630,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:43] {2567} INFO - iteration 46, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:49:45] {2744} INFO - at 47.7s,\testimator xgb_limitdepth's best error=0.3630,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:45] {2567} INFO - iteration 47, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:49:46] {2744} INFO - at 49.4s,\testimator xgb_limitdepth's best error=0.3572,\tbest estimator lgbm's best error=0.3536\n",
"[flaml.automl: 03-30 21:49:46] {2567} INFO - iteration 48, current learner lgbm\n",
"[flaml.automl: 03-30 21:49:48] {2744} INFO - at 51.1s,\testimator lgbm's best error=0.3528,\tbest estimator lgbm's best error=0.3528\n",
"[flaml.automl: 03-30 21:49:48] {2567} INFO - iteration 49, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:49:49] {2744} INFO - at 51.9s,\testimator xgb_limitdepth's best error=0.3521,\tbest estimator xgb_limitdepth's best error=0.3521\n",
"[flaml.automl: 03-30 21:49:49] {2567} INFO - iteration 50, current learner catboost\n",
"[flaml.automl: 03-30 21:50:01] {2744} INFO - at 63.7s,\testimator catboost's best error=0.3499,\tbest estimator catboost's best error=0.3499\n",
"[flaml.automl: 03-30 21:50:01] {2567} INFO - iteration 51, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:50:01] {2744} INFO - at 64.0s,\testimator xgb_limitdepth's best error=0.3521,\tbest estimator catboost's best error=0.3499\n",
"[flaml.automl: 03-30 21:50:01] {2567} INFO - iteration 52, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:50:06] {2744} INFO - at 68.7s,\testimator xgb_limitdepth's best error=0.3521,\tbest estimator catboost's best error=0.3499\n",
"[flaml.automl: 03-30 21:50:06] {2567} INFO - iteration 53, current learner catboost\n",
"[flaml.automl: 03-30 21:50:13] {2744} INFO - at 75.6s,\testimator catboost's best error=0.3481,\tbest estimator catboost's best error=0.3481\n",
"[flaml.automl: 03-30 21:50:13] {2567} INFO - iteration 54, current learner catboost\n",
"[flaml.automl: 03-30 21:50:41] {2744} INFO - at 104.5s,\testimator catboost's best error=0.3481,\tbest estimator catboost's best error=0.3481\n",
"[flaml.automl: 03-30 21:50:41] {2567} INFO - iteration 55, current learner rf\n",
"[flaml.automl: 03-30 21:50:42] {2744} INFO - at 104.7s,\testimator rf's best error=0.3766,\tbest estimator catboost's best error=0.3481\n",
"[flaml.automl: 03-30 21:50:42] {2567} INFO - iteration 56, current learner lgbm\n",
"[flaml.automl: 03-30 21:50:54] {2744} INFO - at 117.2s,\testimator lgbm's best error=0.3405,\tbest estimator lgbm's best error=0.3405\n",
"[flaml.automl: 03-30 21:50:54] {2567} INFO - iteration 57, current learner lrl1\n",
"/home/ec2-user/miniconda3/envs/myflaml/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 03-30 21:50:54] {2744} INFO - at 117.5s,\testimator lrl1's best error=0.4338,\tbest estimator lgbm's best error=0.3405\n",
"[flaml.automl: 03-30 21:50:54] {2567} INFO - iteration 58, current learner lrl1\n",
"/home/ec2-user/miniconda3/envs/myflaml/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 03-30 21:50:55] {2744} INFO - at 117.7s,\testimator lrl1's best error=0.4337,\tbest estimator lgbm's best error=0.3405\n",
"[flaml.automl: 03-30 21:50:55] {2567} INFO - iteration 59, current learner lgbm\n",
"[flaml.automl: 03-30 21:50:56] {2744} INFO - at 119.6s,\testimator lgbm's best error=0.3405,\tbest estimator lgbm's best error=0.3405\n",
"[flaml.automl: 03-30 21:50:56] {2567} INFO - iteration 60, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:02] {2744} INFO - at 124.7s,\testimator lgbm's best error=0.3370,\tbest estimator lgbm's best error=0.3370\n",
"[flaml.automl: 03-30 21:51:02] {2567} INFO - iteration 61, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:07] {2744} INFO - at 130.3s,\testimator lgbm's best error=0.3370,\tbest estimator lgbm's best error=0.3370\n",
"[flaml.automl: 03-30 21:51:07] {2567} INFO - iteration 62, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:12] {2744} INFO - at 134.7s,\testimator lgbm's best error=0.3370,\tbest estimator lgbm's best error=0.3370\n",
"[flaml.automl: 03-30 21:51:12] {2567} INFO - iteration 63, current learner rf\n",
"[flaml.automl: 03-30 21:51:12] {2744} INFO - at 135.0s,\testimator rf's best error=0.3755,\tbest estimator lgbm's best error=0.3370\n",
"[flaml.automl: 03-30 21:51:12] {2567} INFO - iteration 64, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:18] {2744} INFO - at 141.5s,\testimator lgbm's best error=0.3318,\tbest estimator lgbm's best error=0.3318\n",
"[flaml.automl: 03-30 21:51:18] {2567} INFO - iteration 65, current learner rf\n",
"[flaml.automl: 03-30 21:51:19] {2744} INFO - at 141.8s,\testimator rf's best error=0.3755,\tbest estimator lgbm's best error=0.3318\n",
"[flaml.automl: 03-30 21:51:19] {2567} INFO - iteration 66, current learner extra_tree\n",
"[flaml.automl: 03-30 21:51:20] {2744} INFO - at 143.4s,\testimator extra_tree's best error=0.3777,\tbest estimator lgbm's best error=0.3318\n",
"[flaml.automl: 03-30 21:51:20] {2567} INFO - iteration 67, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:26] {2744} INFO - at 148.6s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:26] {2567} INFO - iteration 68, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:32] {2744} INFO - at 155.3s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:32] {2567} INFO - iteration 69, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:38] {2744} INFO - at 161.0s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:38] {2567} INFO - iteration 70, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:44] {2744} INFO - at 167.3s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:44] {2567} INFO - iteration 71, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:50] {2744} INFO - at 173.2s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:50] {2567} INFO - iteration 72, current learner rf\n",
"[flaml.automl: 03-30 21:51:50] {2744} INFO - at 173.4s,\testimator rf's best error=0.3755,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:50] {2567} INFO - iteration 73, current learner xgboost\n",
"[flaml.automl: 03-30 21:51:51] {2744} INFO - at 173.6s,\testimator xgboost's best error=0.3594,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:51] {2567} INFO - iteration 74, current learner lgbm\n",
"[flaml.automl: 03-30 21:51:56] {2744} INFO - at 178.7s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:51:56] {2567} INFO - iteration 75, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:52:04] {2744} INFO - at 186.8s,\testimator xgb_limitdepth's best error=0.3382,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:04] {2567} INFO - iteration 76, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:52:06] {2744} INFO - at 189.6s,\testimator xgb_limitdepth's best error=0.3382,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:06] {2567} INFO - iteration 77, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:52:29] {2744} INFO - at 212.3s,\testimator xgb_limitdepth's best error=0.3382,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:29] {2567} INFO - iteration 78, current learner lgbm\n",
"[flaml.automl: 03-30 21:52:33] {2744} INFO - at 215.8s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:33] {2567} INFO - iteration 79, current learner lgbm\n",
"[flaml.automl: 03-30 21:52:43] {2744} INFO - at 226.1s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:43] {2567} INFO - iteration 80, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:52:48] {2744} INFO - at 230.8s,\testimator xgb_limitdepth's best error=0.3382,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:48] {2567} INFO - iteration 81, current learner rf\n",
"[flaml.automl: 03-30 21:52:48] {2744} INFO - at 231.2s,\testimator rf's best error=0.3746,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:52:48] {2567} INFO - iteration 82, current learner lgbm\n",
"[flaml.automl: 03-30 21:53:12] {2744} INFO - at 254.6s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:12] {2567} INFO - iteration 83, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:53:24] {2744} INFO - at 266.9s,\testimator xgb_limitdepth's best error=0.3341,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:24] {2567} INFO - iteration 84, current learner rf\n",
"[flaml.automl: 03-30 21:53:24] {2744} INFO - at 267.2s,\testimator rf's best error=0.3746,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:24] {2567} INFO - iteration 85, current learner extra_tree\n",
"[flaml.automl: 03-30 21:53:25] {2744} INFO - at 268.3s,\testimator extra_tree's best error=0.3777,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:25] {2567} INFO - iteration 86, current learner extra_tree\n",
"[flaml.automl: 03-30 21:53:27] {2744} INFO - at 270.4s,\testimator extra_tree's best error=0.3753,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:27] {2567} INFO - iteration 87, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:53:39] {2744} INFO - at 281.8s,\testimator xgb_limitdepth's best error=0.3341,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:39] {2567} INFO - iteration 88, current learner xgboost\n",
"[flaml.automl: 03-30 21:53:40] {2744} INFO - at 282.8s,\testimator xgboost's best error=0.3594,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:40] {2567} INFO - iteration 89, current learner extra_tree\n",
"[flaml.automl: 03-30 21:53:42] {2744} INFO - at 285.0s,\testimator extra_tree's best error=0.3753,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:42] {2567} INFO - iteration 90, current learner lgbm\n",
"[flaml.automl: 03-30 21:53:44] {2744} INFO - at 286.9s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:53:44] {2567} INFO - iteration 91, current learner lgbm\n",
"[flaml.automl: 03-30 21:54:20] {2744} INFO - at 322.9s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:20] {2567} INFO - iteration 92, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:54:29] {2744} INFO - at 331.6s,\testimator xgb_limitdepth's best error=0.3316,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:29] {2567} INFO - iteration 93, current learner xgboost\n",
"[flaml.automl: 03-30 21:54:30] {2744} INFO - at 332.8s,\testimator xgboost's best error=0.3594,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:30] {2567} INFO - iteration 94, current learner lrl1\n",
"/home/ec2-user/miniconda3/envs/myflaml/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 03-30 21:54:30] {2744} INFO - at 333.0s,\testimator lrl1's best error=0.4337,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:30] {2567} INFO - iteration 95, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:54:40] {2744} INFO - at 343.1s,\testimator xgb_limitdepth's best error=0.3316,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:40] {2567} INFO - iteration 96, current learner extra_tree\n",
"[flaml.automl: 03-30 21:54:42] {2744} INFO - at 344.6s,\testimator extra_tree's best error=0.3753,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:42] {2567} INFO - iteration 97, current learner lgbm\n",
"[flaml.automl: 03-30 21:54:43] {2744} INFO - at 346.2s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:43] {2567} INFO - iteration 98, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:54:52] {2744} INFO - at 354.8s,\testimator xgb_limitdepth's best error=0.3316,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:52] {2567} INFO - iteration 99, current learner rf\n",
"[flaml.automl: 03-30 21:54:52] {2744} INFO - at 355.3s,\testimator rf's best error=0.3746,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:52] {2567} INFO - iteration 100, current learner extra_tree\n",
"[flaml.automl: 03-30 21:54:56] {2744} INFO - at 358.8s,\testimator extra_tree's best error=0.3753,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:56] {2567} INFO - iteration 101, current learner rf\n",
"[flaml.automl: 03-30 21:54:56] {2744} INFO - at 359.2s,\testimator rf's best error=0.3746,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:54:56] {2567} INFO - iteration 102, current learner lgbm\n",
"[flaml.automl: 03-30 21:55:02] {2744} INFO - at 365.5s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:02] {2567} INFO - iteration 103, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:55:12] {2744} INFO - at 375.1s,\testimator xgb_limitdepth's best error=0.3306,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:12] {2567} INFO - iteration 104, current learner xgboost\n",
"[flaml.automl: 03-30 21:55:13] {2744} INFO - at 376.4s,\testimator xgboost's best error=0.3501,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:13] {2567} INFO - iteration 105, current learner lgbm\n",
"[flaml.automl: 03-30 21:55:18] {2744} INFO - at 381.5s,\testimator lgbm's best error=0.3282,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:18] {2567} INFO - iteration 106, current learner xgboost\n",
"[flaml.automl: 03-30 21:55:21] {2744} INFO - at 383.9s,\testimator xgboost's best error=0.3501,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:21] {2567} INFO - iteration 107, current learner xgboost\n",
"[flaml.automl: 03-30 21:55:22] {2744} INFO - at 385.1s,\testimator xgboost's best error=0.3392,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:22] {2567} INFO - iteration 108, current learner xgboost\n",
"[flaml.automl: 03-30 21:55:23] {2744} INFO - at 386.5s,\testimator xgboost's best error=0.3392,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:23] {2567} INFO - iteration 109, current learner xgboost\n",
"[flaml.automl: 03-30 21:55:25] {2744} INFO - at 387.7s,\testimator xgboost's best error=0.3391,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:25] {2567} INFO - iteration 110, current learner rf\n",
"[flaml.automl: 03-30 21:55:25] {2744} INFO - at 388.1s,\testimator rf's best error=0.3746,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:25] {2567} INFO - iteration 111, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:55:34] {2744} INFO - at 397.0s,\testimator xgb_limitdepth's best error=0.3306,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:34] {2567} INFO - iteration 112, current learner extra_tree\n",
"[flaml.automl: 03-30 21:55:38] {2744} INFO - at 400.7s,\testimator extra_tree's best error=0.3711,\tbest estimator lgbm's best error=0.3282\n",
"[flaml.automl: 03-30 21:55:38] {2567} INFO - iteration 113, current learner lgbm\n",
"[flaml.automl: 03-30 21:55:43] {2744} INFO - at 405.9s,\testimator lgbm's best error=0.3274,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:55:43] {2567} INFO - iteration 114, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:55:55] {2744} INFO - at 417.7s,\testimator xgb_limitdepth's best error=0.3306,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:55:55] {2567} INFO - iteration 115, current learner extra_tree\n",
"[flaml.automl: 03-30 21:55:57] {2744} INFO - at 419.9s,\testimator extra_tree's best error=0.3711,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:55:57] {2567} INFO - iteration 116, current learner lrl1\n",
"/home/ec2-user/miniconda3/envs/myflaml/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
" warnings.warn(\"The max_iter was reached which means \"\n",
"[flaml.automl: 03-30 21:55:58] {2744} INFO - at 421.0s,\testimator lrl1's best error=0.4334,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:55:58] {2567} INFO - iteration 117, current learner lgbm\n",
"[flaml.automl: 03-30 21:56:03] {2744} INFO - at 426.5s,\testimator lgbm's best error=0.3274,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:56:03] {2567} INFO - iteration 118, current learner lgbm\n",
"[flaml.automl: 03-30 21:56:07] {2744} INFO - at 429.6s,\testimator lgbm's best error=0.3274,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:56:07] {2567} INFO - iteration 119, current learner xgb_limitdepth\n",
"[flaml.automl: 03-30 21:56:16] {2744} INFO - at 439.2s,\testimator xgb_limitdepth's best error=0.3306,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:56:16] {2567} INFO - iteration 120, current learner extra_tree\n",
"[flaml.automl: 03-30 21:56:18] {2744} INFO - at 440.7s,\testimator extra_tree's best error=0.3711,\tbest estimator lgbm's best error=0.3274\n",
"[flaml.automl: 03-30 21:56:18] {2567} INFO - iteration 121, current learner lgbm\n",
"[flaml.automl: 03-30 21:56:33] {2744} INFO - at 456.2s,\testimator lgbm's best error=0.3268,\tbest estimator lgbm's best error=0.3268\n",
"[flaml.automl: 03-30 21:56:33] {2567} INFO - iteration 122, current learner lgbm\n",
"[flaml.automl: 03-30 21:56:40] {2744} INFO - at 463.3s,\testimator lgbm's best error=0.3268,\tbest estimator lgbm's best error=0.3268\n",
"[flaml.automl: 03-30 21:56:40] {2567} INFO - iteration 123, current learner lgbm\n",
"[flaml.automl: 03-30 21:56:58] {2744} INFO - at 481.3s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:56:58] {2567} INFO - iteration 124, current learner extra_tree\n",
"[flaml.automl: 03-30 21:57:05] {2744} INFO - at 488.1s,\testimator extra_tree's best error=0.3623,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:57:05] {2567} INFO - iteration 125, current learner rf\n",
"[flaml.automl: 03-30 21:57:05] {2744} INFO - at 488.5s,\testimator rf's best error=0.3722,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:57:05] {2567} INFO - iteration 126, current learner lgbm\n",
"[flaml.automl: 03-30 21:57:15] {2744} INFO - at 498.5s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:57:15] {2567} INFO - iteration 127, current learner lgbm\n",
"[flaml.automl: 03-30 21:58:00] {2744} INFO - at 543.2s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:00] {2567} INFO - iteration 128, current learner lgbm\n",
"[flaml.automl: 03-30 21:58:24] {2744} INFO - at 566.8s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:24] {2567} INFO - iteration 129, current learner lgbm\n",
"[flaml.automl: 03-30 21:58:41] {2744} INFO - at 583.9s,\testimator lgbm's best error=0.3250,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:41] {2567} INFO - iteration 130, current learner rf\n",
"[flaml.automl: 03-30 21:58:41] {2744} INFO - at 584.2s,\testimator rf's best error=0.3722,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:41] {2567} INFO - iteration 131, current learner extra_tree\n",
"[flaml.automl: 03-30 21:58:48] {2744} INFO - at 590.7s,\testimator extra_tree's best error=0.3572,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:48] {2567} INFO - iteration 132, current learner extra_tree\n",
"[flaml.automl: 03-30 21:58:54] {2744} INFO - at 596.8s,\testimator extra_tree's best error=0.3572,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:54] {2567} INFO - iteration 133, current learner rf\n",
"[flaml.automl: 03-30 21:58:54] {2744} INFO - at 597.0s,\testimator rf's best error=0.3722,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:54] {2567} INFO - iteration 134, current learner rf\n",
"[flaml.automl: 03-30 21:58:54] {2744} INFO - at 597.2s,\testimator rf's best error=0.3701,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:54] {2567} INFO - iteration 135, current learner rf\n",
"[flaml.automl: 03-30 21:58:54] {2744} INFO - at 597.3s,\testimator rf's best error=0.3701,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:54] {2567} INFO - iteration 136, current learner rf\n",
"[flaml.automl: 03-30 21:58:54] {2744} INFO - at 597.5s,\testimator rf's best error=0.3701,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:54] {2567} INFO - iteration 137, current learner rf\n",
"[flaml.automl: 03-30 21:58:55] {2744} INFO - at 597.7s,\testimator rf's best error=0.3655,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:55] {2567} INFO - iteration 138, current learner rf\n",
"[flaml.automl: 03-30 21:58:55] {2744} INFO - at 597.8s,\testimator rf's best error=0.3655,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:55] {2567} INFO - iteration 139, current learner rf\n",
"[flaml.automl: 03-30 21:58:55] {2744} INFO - at 598.1s,\testimator rf's best error=0.3641,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:55] {2567} INFO - iteration 140, current learner rf\n",
"[flaml.automl: 03-30 21:58:55] {2744} INFO - at 598.3s,\testimator rf's best error=0.3604,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:55] {2567} INFO - iteration 141, current learner rf\n",
"[flaml.automl: 03-30 21:58:55] {2744} INFO - at 598.5s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:55] {2567} INFO - iteration 142, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 598.7s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 143, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.0s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 144, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.1s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 145, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.3s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 146, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.4s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 147, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.5s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 148, current learner rf\n",
"[flaml.automl: 03-30 21:58:56] {2744} INFO - at 599.5s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:56] {2567} INFO - iteration 149, current learner rf\n",
"[flaml.automl: 03-30 21:58:57] {2744} INFO - at 599.6s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:58:57] {2567} INFO - iteration 150, current learner rf\n",
"[flaml.automl: 03-30 21:58:57] {2744} INFO - at 599.7s,\testimator rf's best error=0.3594,\tbest estimator lgbm's best error=0.3250\n",
"[flaml.automl: 03-30 21:59:13] {2974} INFO - retrain lgbm for 16.9s\n",
"[flaml.automl: 03-30 21:59:14] {2981} INFO - retrained model: LGBMClassifier(colsample_bytree=0.763983850698587,\n",
"[flaml.automl: 03-30 21:59:14] {2310} INFO - fit succeeded\n",
"[flaml.automl: 03-30 21:59:14] {2311} INFO - Time taken to find the best model: 481.2624523639679\n",
"[flaml.automl: 03-30 21:59:14] {2322} WARNING - Time taken to find the best model is 80% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"
"Some experienced automl users may have a preferred model to tune or may already have a reasonably by-hand-tuned model before launching the automl experiment. They need to select optimal configurations for the customized model mixed with standard built-in learners. \n",
"\n",
"FLAML can easily incorporate customized/new learners (preferably with sklearn API) provided by users in a real-time manner, as demonstrated below."
"[Regularized Greedy Forest](https://arxiv.org/abs/1109.0887) (RGF) is a machine learning method currently not included in FLAML. The RGF has many tuning parameters, the most critical of which are: `[max_leaf, n_iter, n_tree_search, opt_interval, min_samples_leaf]`. To run a customized/new learner, the user needs to provide the following information:\n",
"* an implementation of the customized/new learner\n",
"* a list of hyperparameter names and types\n",
"* rough ranges of hyperparameters (i.e., upper/lower bounds)\n",
"* choose initial value corresponding to low cost for cost-related hyperparameters (e.g., initial value for max_leaf and n_iter should be small)\n",
"\n",
"In this example, the above information for RGF is wrapped in a python class called *MyRegularizedGreedyForest* that exposes the hyperparameters."
"It's also easy to customize the optimization metric. As an example, we demonstrate with a custom metric function which combines training loss and validation loss as the final loss to minimize."
"[flaml.automl: 03-30 22:00:14] {2281} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'catboost', 'xgboost', 'extra_tree', 'xgb_limitdepth', 'lrl1']\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 0, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2697} INFO - Estimated sufficient time budget=48059s. Estimated necessary time budget=1180s.\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 0.8s,\testimator lgbm's best error=0.6796,\tbest estimator lgbm's best error=0.6796\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 1, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 0.9s,\testimator lgbm's best error=0.6796,\tbest estimator lgbm's best error=0.6796\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 2, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 0.9s,\testimator lgbm's best error=0.6491,\tbest estimator lgbm's best error=0.6491\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 3, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 1.0s,\testimator lgbm's best error=0.6423,\tbest estimator lgbm's best error=0.6423\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 4, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 1.1s,\testimator lgbm's best error=0.6423,\tbest estimator lgbm's best error=0.6423\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 5, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:14] {2744} INFO - at 1.2s,\testimator lgbm's best error=0.6423,\tbest estimator lgbm's best error=0.6423\n",
"[flaml.automl: 03-30 22:00:14] {2567} INFO - iteration 6, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.3s,\testimator lgbm's best error=0.6400,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 7, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.3s,\testimator xgboost's best error=0.6672,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 8, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.4s,\testimator lgbm's best error=0.6400,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 9, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.5s,\testimator xgboost's best error=0.6672,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 10, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.5s,\testimator xgboost's best error=0.6500,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 11, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.6s,\testimator xgboost's best error=0.6413,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 12, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.6s,\testimator xgboost's best error=0.6413,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 13, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.7s,\testimator xgboost's best error=0.6413,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 14, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.8s,\testimator lgbm's best error=0.6400,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 15, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 1.9s,\testimator xgboost's best error=0.6413,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 16, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 2.0s,\testimator lgbm's best error=0.6400,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 17, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:15] {2744} INFO - at 2.0s,\testimator xgboost's best error=0.6413,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:15] {2567} INFO - iteration 18, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.3s,\testimator lgbm's best error=0.6400,\tbest estimator lgbm's best error=0.6400\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 19, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.4s,\testimator xgboost's best error=0.6393,\tbest estimator xgboost's best error=0.6393\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 20, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.4s,\testimator extra_tree's best error=0.6734,\tbest estimator xgboost's best error=0.6393\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 21, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.6s,\testimator xgboost's best error=0.6342,\tbest estimator xgboost's best error=0.6342\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 22, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.7s,\testimator xgboost's best error=0.6342,\tbest estimator xgboost's best error=0.6342\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 23, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.7s,\testimator extra_tree's best error=0.6617,\tbest estimator xgboost's best error=0.6342\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 24, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.8s,\testimator extra_tree's best error=0.6617,\tbest estimator xgboost's best error=0.6342\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 25, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 2.9s,\testimator xgboost's best error=0.6342,\tbest estimator xgboost's best error=0.6342\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 26, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 3.1s,\testimator xgboost's best error=0.6308,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 27, current learner rf\n",
"[flaml.automl: 03-30 22:00:16] {2744} INFO - at 3.1s,\testimator rf's best error=0.6531,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:16] {2567} INFO - iteration 28, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.3s,\testimator xgboost's best error=0.6308,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 29, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.5s,\testimator xgboost's best error=0.6308,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 30, current learner rf\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.6s,\testimator rf's best error=0.6471,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 31, current learner rf\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.6s,\testimator rf's best error=0.6471,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 32, current learner rf\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.8s,\testimator rf's best error=0.6471,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 33, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 3.9s,\testimator extra_tree's best error=0.6617,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 34, current learner rf\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 4.0s,\testimator rf's best error=0.6460,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 35, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 4.1s,\testimator xgboost's best error=0.6308,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 36, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:17] {2744} INFO - at 4.2s,\testimator extra_tree's best error=0.6527,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:17] {2567} INFO - iteration 37, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:18] {2744} INFO - at 4.3s,\testimator xgboost's best error=0.6308,\tbest estimator xgboost's best error=0.6308\n",
"[flaml.automl: 03-30 22:00:18] {2567} INFO - iteration 38, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:18] {2744} INFO - at 5.1s,\testimator xgboost's best error=0.6252,\tbest estimator xgboost's best error=0.6252\n",
"[flaml.automl: 03-30 22:00:18] {2567} INFO - iteration 39, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:19] {2744} INFO - at 5.6s,\testimator xgboost's best error=0.6252,\tbest estimator xgboost's best error=0.6252\n",
"[flaml.automl: 03-30 22:00:19] {2567} INFO - iteration 40, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:19] {2744} INFO - at 5.7s,\testimator extra_tree's best error=0.6527,\tbest estimator xgboost's best error=0.6252\n",
"[flaml.automl: 03-30 22:00:19] {2567} INFO - iteration 41, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:19] {2744} INFO - at 5.8s,\testimator extra_tree's best error=0.6527,\tbest estimator xgboost's best error=0.6252\n",
"[flaml.automl: 03-30 22:00:19] {2567} INFO - iteration 42, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:19] {2744} INFO - at 6.0s,\testimator lgbm's best error=0.6335,\tbest estimator xgboost's best error=0.6252\n",
"[flaml.automl: 03-30 22:00:19] {2567} INFO - iteration 43, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:21] {2744} INFO - at 7.7s,\testimator xgboost's best error=0.6237,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:21] {2567} INFO - iteration 44, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:21] {2744} INFO - at 7.9s,\testimator extra_tree's best error=0.6527,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:21] {2567} INFO - iteration 45, current learner xgboost\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 8.6s,\testimator xgboost's best error=0.6237,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 46, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 8.7s,\testimator lgbm's best error=0.6335,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 47, current learner catboost\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 8.8s,\testimator catboost's best error=0.6828,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 48, current learner catboost\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 8.9s,\testimator catboost's best error=0.6828,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 49, current learner catboost\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 9.0s,\testimator catboost's best error=0.6738,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 50, current learner catboost\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 9.1s,\testimator catboost's best error=0.6738,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 51, current learner extra_tree\n",
"[flaml.automl: 03-30 22:00:22] {2744} INFO - at 9.2s,\testimator extra_tree's best error=0.6527,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:22] {2567} INFO - iteration 52, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:23] {2744} INFO - at 9.3s,\testimator lgbm's best error=0.6335,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:23] {2567} INFO - iteration 53, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:23] {2744} INFO - at 9.5s,\testimator lgbm's best error=0.6335,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:23] {2567} INFO - iteration 54, current learner lgbm\n",
"[flaml.automl: 03-30 22:00:23] {2744} INFO - at 10.1s,\testimator lgbm's best error=0.6335,\tbest estimator xgboost's best error=0.6237\n",
"[flaml.automl: 03-30 22:00:32] {2974} INFO - retrain xgboost for 8.8s\n",
"[flaml.automl: 03-30 22:00:32] {2981} INFO - retrained model: XGBClassifier(base_score=0.5, booster='gbtree',\n",
"[flaml.automl: 03-30 22:00:32] {2310} INFO - fit succeeded\n",
"[flaml.automl: 03-30 22:00:32] {2311} INFO - Time taken to find the best model: 7.734541177749634\n",
"[flaml.automl: 03-30 22:00:32] {2322} WARNING - Time taken to find the best model is 77% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"