autogen/website/docs/Examples/Tune-PyTorch.md

288 lines
8.6 KiB
Markdown
Raw Normal View History

# Tune - PyTorch
This example uses flaml to tune a pytorch model on CIFAR10.
## Prepare for tuning
### Requirements
```bash
pip install torchvision "flaml[blendsearch,ray]"
```
Before we are ready for tuning, we first need to define the neural network that we would like to tune.
### Network Specification
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import random_split
import torchvision
import torchvision.transforms as transforms
class Net(nn.Module):
def __init__(self, l1=120, l2=84):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, l1)
self.fc2 = nn.Linear(l1, l2)
self.fc3 = nn.Linear(l2, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
### Data
```python
def load_data(data_dir="data"):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(
root=data_dir, train=True, download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(
root=data_dir, train=False, download=True, transform=transform)
return trainset, testset
```
### Training
```python
from ray import tune
def train_cifar(config, checkpoint_dir=None, data_dir=None):
if "l1" not in config:
logger.warning(config)
net = Net(2**config["l1"], 2**config["l2"])
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)
# The `checkpoint_dir` parameter gets passed by Ray Tune when a checkpoint
# should be restored.
if checkpoint_dir:
checkpoint = os.path.join(checkpoint_dir, "checkpoint")
model_state, optimizer_state = torch.load(checkpoint)
net.load_state_dict(model_state)
optimizer.load_state_dict(optimizer_state)
trainset, testset = load_data(data_dir)
test_abs = int(len(trainset) * 0.8)
train_subset, val_subset = random_split(
trainset, [test_abs, len(trainset) - test_abs])
trainloader = torch.utils.data.DataLoader(
train_subset,
batch_size=int(2**config["batch_size"]),
shuffle=True,
num_workers=4)
valloader = torch.utils.data.DataLoader(
val_subset,
batch_size=int(2**config["batch_size"]),
shuffle=True,
num_workers=4)
for epoch in range(int(round(config["num_epochs"]))): # loop over the dataset multiple times
running_loss = 0.0
epoch_steps = 0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
epoch_steps += 1
if i % 2000 == 1999: # print every 2000 mini-batches
print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
running_loss / epoch_steps))
running_loss = 0.0
# Validation loss
val_loss = 0.0
val_steps = 0
total = 0
correct = 0
for i, data in enumerate(valloader, 0):
with torch.no_grad():
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
val_loss += loss.cpu().numpy()
val_steps += 1
# Here we save a checkpoint. It is automatically registered with
# Ray Tune and will potentially be passed as the `checkpoint_dir`
# parameter in future iterations.
with tune.checkpoint_dir(step=epoch) as checkpoint_dir:
path = os.path.join(checkpoint_dir, "checkpoint")
torch.save(
(net.state_dict(), optimizer.state_dict()), path)
tune.report(loss=(val_loss / val_steps), accuracy=correct / total)
print("Finished Training")
```
### Test Accuracy
```python
def _test_accuracy(net, device="cpu"):
trainset, testset = load_data()
testloader = torch.utils.data.DataLoader(
testset, batch_size=4, shuffle=False, num_workers=2)
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct / total
```
## Hyperparameter Optimization
```python
import numpy as np
import flaml
import os
data_dir = os.path.abspath("data")
load_data(data_dir) # Download data for all trials before starting the run
```
### Search space
```python
max_num_epoch = 100
config = {
"l1": tune.randint(2, 9), # log transformed with base 2
"l2": tune.randint(2, 9), # log transformed with base 2
"lr": tune.loguniform(1e-4, 1e-1),
"num_epochs": tune.loguniform(1, max_num_epoch),
"batch_size": tune.randint(1, 5) # log transformed with base 2
}
```
### Budget and resource constraints
```python
time_budget_s = 600 # time budget in seconds
gpus_per_trial = 0.5 # number of gpus for each trial; 0.5 means two training jobs can share one gpu
num_samples = 500 # maximal number of trials
np.random.seed(7654321)
```
### Launch the tuning
```python
import time
start_time = time.time()
result = flaml.tune.run(
tune.with_parameters(train_cifar, data_dir=data_dir),
config=config,
metric="loss",
mode="min",
low_cost_partial_config={"num_epochs": 1},
max_resource=max_num_epoch,
min_resource=1,
scheduler="asha", # Use asha scheduler to perform early stopping based on intermediate results reported
resources_per_trial={"cpu": 1, "gpu": gpus_per_trial},
local_dir='logs/',
num_samples=num_samples,
time_budget_s=time_budget_s,
use_ray=True)
```
### Check the result
```python
print(f"#trials={len(result.trials)}")
print(f"time={time.time()-start_time}")
best_trial = result.get_best_trial("loss", "min", "all")
print("Best trial config: {}".format(best_trial.config))
print("Best trial final validation loss: {}".format(
best_trial.metric_analysis["loss"]["min"]))
print("Best trial final validation accuracy: {}".format(
best_trial.metric_analysis["accuracy"]["max"]))
best_trained_model = Net(2**best_trial.config["l1"],
2**best_trial.config["l2"])
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
if gpus_per_trial > 1:
best_trained_model = nn.DataParallel(best_trained_model)
best_trained_model.to(device)
checkpoint_value = getattr(best_trial.checkpoint, "dir_or_data", None) or best_trial.checkpoint.value
checkpoint_path = os.path.join(checkpoint_value, "checkpoint")
model_state, optimizer_state = torch.load(checkpoint_path)
best_trained_model.load_state_dict(model_state)
test_acc = _test_accuracy(best_trained_model, device)
print("Best trial test set accuracy: {}".format(test_acc))
```
### Sample of output
```
#trials=44
time=1193.913584947586
Best trial config: {'l1': 8, 'l2': 8, 'lr': 0.0008818671030627281, 'num_epochs': 55.9513429004283, 'batch_size': 3}
Best trial final validation loss: 1.0694482081472874
Best trial final validation accuracy: 0.6389
Files already downloaded and verified
Files already downloaded and verified
Best trial test set accuracy: 0.6294
```
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/tune_pytorch.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/tune_pytorch.ipynb)