autogen/test/ray/distribute_tune.py

48 lines
1.7 KiB
Python
Raw Normal View History

from ray_on_aml.core import Ray_On_AML
import lightgbm as lgb
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from flaml import tune
Refactor into automl subpackage (#809) * Refactor into automl subpackage Moved some of the packages into an automl subpackage to tidy before the task-based refactor. This is in response to discussions with the group and a comment on the first task-based PR. Only changes here are moving subpackages and modules into the new automl, fixing imports to work with this structure and fixing some dependencies in setup.py. * Fix doc building post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Fix broken links in website post automl subpackage refactor * Remove vw from test deps as this is breaking the build * Move default back to the top-level I'd moved this to automl as that's where it's used internally, but had missed that this is actually part of the public interface so makes sense to live where it was. * Re-add top level modules with deprecation warnings flaml.data, flaml.ml and flaml.model are re-added to the top level, being re-exported from flaml.automl for backwards compatability. Adding a deprecation warning so that we can have a planned removal later. * Fix model.py line-endings * Pin pytorch-lightning to less than 1.8.0 We're seeing strange lightning related bugs from pytorch-forecasting since the release of lightning 1.8.0. Going to try constraining this to see if we have a fix. * Fix the lightning version pin Was optimistic with setting it in the 1.7.x range, but that isn't compatible with python 3.6 * Remove lightning version pin * Revert dependency version changes * Minor change to retrigger the build * Fix line endings in ml.py and model.py Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu> Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 20:46:08 +00:00
from flaml.automl.model import LGBMEstimator
def train_breast_cancer(config):
params = LGBMEstimator(**config).params
X_train = ray.get(X_train_ref)
train_set = lgb.Dataset(X_train, label=y_train)
gbm = lgb.train(params, train_set)
preds = gbm.predict(X_test)
pred_labels = np.rint(preds)
tune.report(mean_accuracy=accuracy_score(y_test, pred_labels), done=True)
if __name__ == "__main__":
ray_on_aml = Ray_On_AML()
ray = ray_on_aml.getRay()
if ray:
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
X_train_ref = ray.put(X_train)
flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape)
config_search_space = {hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()}
low_cost_partial_config = {
hp: space["low_cost_init_value"]
for hp, space in flaml_lgbm_search_space.items()
if "low_cost_init_value" in space
}
analysis = tune.run(
train_breast_cancer,
metric="mean_accuracy",
mode="max",
config=config_search_space,
num_samples=-1,
time_budget_s=60,
use_ray=True,
)
# print("Best hyperparameters found were: ", analysis.best_config)
print("The best trial's result: ", analysis.best_trial.last_result)