"with low computational cost. It is fast and cheap. The simple and lightweight design makes it easy to use and extend, such as adding new learners. FLAML can \n",
"Download [Airlines dataset](https://www.openml.org/d/1169) from OpenML. The task is to predict whether a given flight will be delayed, given the information of the scheduled departure."
"In the FLAML automl run configuration, users can specify the task type, time budget, error metric, learner list, whether to subsample, resampling strategy type, and so on. All these arguments have default values which will be used if users do not provide them. For example, the default ML learners of FLAML are `['lgbm', 'xgboost', 'catboost', 'rf', 'extra_tree', 'lrl1']`. "
"[flaml.automl: 10-08 15:12:49] {1458} INFO - Data split method: stratified\n",
"[flaml.automl: 10-08 15:12:49] {1462} INFO - Evaluation method: holdout\n",
"[flaml.automl: 10-08 15:12:49] {1510} INFO - Minimizing error metric: 1-accuracy\n",
"[flaml.automl: 10-08 15:12:49] {1547} INFO - List of ML learners in AutoML Run: ['lgbm', 'rf', 'xgboost', 'extra_tree', 'lrl1']\n",
"[flaml.automl: 10-08 15:12:49] {1777} INFO - iteration 0, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:50] {1894} INFO - Estimated sufficient time budget=318171s. Estimated necessary time budget=5298s.\n",
"[flaml.automl: 10-08 15:12:50] {1966} INFO - at 1.8s,\testimator lgbm's best error=0.3777,\tbest estimator lgbm's best error=0.3777\n",
"[flaml.automl: 10-08 15:12:50] {1777} INFO - iteration 1, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:51] {1966} INFO - at 2.4s,\testimator lgbm's best error=0.3759,\tbest estimator lgbm's best error=0.3759\n",
"[flaml.automl: 10-08 15:12:51] {1777} INFO - iteration 2, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:53] {1966} INFO - at 4.7s,\testimator lgbm's best error=0.3759,\tbest estimator lgbm's best error=0.3759\n",
"[flaml.automl: 10-08 15:12:53] {1777} INFO - iteration 3, current learner xgboost\n",
"[flaml.automl: 10-08 15:12:53] {1966} INFO - at 5.0s,\testimator xgboost's best error=0.3787,\tbest estimator lgbm's best error=0.3759\n",
"[flaml.automl: 10-08 15:12:53] {1777} INFO - iteration 4, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:54] {1966} INFO - at 5.1s,\testimator lgbm's best error=0.3644,\tbest estimator lgbm's best error=0.3644\n",
"[flaml.automl: 10-08 15:12:54] {1777} INFO - iteration 5, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:54] {1966} INFO - at 5.3s,\testimator lgbm's best error=0.3588,\tbest estimator lgbm's best error=0.3588\n",
"[flaml.automl: 10-08 15:12:54] {1777} INFO - iteration 6, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:54] {1966} INFO - at 5.4s,\testimator lgbm's best error=0.3588,\tbest estimator lgbm's best error=0.3588\n",
"[flaml.automl: 10-08 15:12:54] {1777} INFO - iteration 7, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:54] {1966} INFO - at 5.9s,\testimator lgbm's best error=0.3555,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:54] {1777} INFO - iteration 8, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:55] {1966} INFO - at 6.2s,\testimator lgbm's best error=0.3555,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:55] {1777} INFO - iteration 9, current learner xgboost\n",
"[flaml.automl: 10-08 15:12:55] {1966} INFO - at 6.3s,\testimator xgboost's best error=0.3649,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:55] {1777} INFO - iteration 10, current learner xgboost\n",
"[flaml.automl: 10-08 15:12:55] {1966} INFO - at 6.4s,\testimator xgboost's best error=0.3649,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:55] {1777} INFO - iteration 11, current learner xgboost\n",
"[flaml.automl: 10-08 15:12:55] {1966} INFO - at 6.6s,\testimator xgboost's best error=0.3649,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:55] {1777} INFO - iteration 12, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:56] {1966} INFO - at 7.7s,\testimator lgbm's best error=0.3555,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:56] {1777} INFO - iteration 13, current learner xgboost\n",
"[flaml.automl: 10-08 15:12:56] {1966} INFO - at 7.8s,\testimator xgboost's best error=0.3629,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:56] {1777} INFO - iteration 14, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:58] {1966} INFO - at 9.2s,\testimator lgbm's best error=0.3555,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:58] {1777} INFO - iteration 15, current learner extra_tree\n",
"[flaml.automl: 10-08 15:12:58] {1966} INFO - at 9.4s,\testimator extra_tree's best error=0.3773,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:58] {1777} INFO - iteration 16, current learner extra_tree\n",
"[flaml.automl: 10-08 15:12:58] {1966} INFO - at 9.5s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:58] {1777} INFO - iteration 17, current learner rf\n",
"[flaml.automl: 10-08 15:12:58] {1966} INFO - at 9.7s,\testimator rf's best error=0.3765,\tbest estimator lgbm's best error=0.3555\n",
"[flaml.automl: 10-08 15:12:58] {1777} INFO - iteration 18, current learner lgbm\n",
"[flaml.automl: 10-08 15:12:59] {1966} INFO - at 10.7s,\testimator lgbm's best error=0.3542,\tbest estimator lgbm's best error=0.3542\n",
"[flaml.automl: 10-08 15:12:59] {1777} INFO - iteration 19, current learner rf\n",
"[flaml.automl: 10-08 15:12:59] {1966} INFO - at 10.9s,\testimator rf's best error=0.3724,\tbest estimator lgbm's best error=0.3542\n",
"[flaml.automl: 10-08 15:12:59] {1777} INFO - iteration 20, current learner rf\n",
"[flaml.automl: 10-08 15:13:00] {1966} INFO - at 11.1s,\testimator rf's best error=0.3724,\tbest estimator lgbm's best error=0.3542\n",
"[flaml.automl: 10-08 15:13:00] {1777} INFO - iteration 21, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:00] {1966} INFO - at 11.2s,\testimator xgboost's best error=0.3629,\tbest estimator lgbm's best error=0.3542\n",
"[flaml.automl: 10-08 15:13:00] {1777} INFO - iteration 22, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:02] {1966} INFO - at 13.2s,\testimator lgbm's best error=0.3507,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:02] {1777} INFO - iteration 23, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:03] {1966} INFO - at 14.1s,\testimator lgbm's best error=0.3507,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:03] {1777} INFO - iteration 24, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:03] {1966} INFO - at 14.2s,\testimator xgboost's best error=0.3612,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:03] {1777} INFO - iteration 25, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:03] {1966} INFO - at 14.4s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:03] {1777} INFO - iteration 26, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:07] {1966} INFO - at 19.0s,\testimator lgbm's best error=0.3507,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:07] {1777} INFO - iteration 27, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:08] {1966} INFO - at 19.1s,\testimator xgboost's best error=0.3612,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:08] {1777} INFO - iteration 28, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:08] {1966} INFO - at 19.3s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:08] {1777} INFO - iteration 29, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:08] {1966} INFO - at 19.5s,\testimator xgboost's best error=0.3612,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:08] {1777} INFO - iteration 30, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:09] {1966} INFO - at 20.9s,\testimator lgbm's best error=0.3507,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:09] {1777} INFO - iteration 31, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:11] {1966} INFO - at 22.5s,\testimator lgbm's best error=0.3507,\tbest estimator lgbm's best error=0.3507\n",
"[flaml.automl: 10-08 15:13:11] {1777} INFO - iteration 32, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:23] {1966} INFO - at 34.3s,\testimator lgbm's best error=0.3404,\tbest estimator lgbm's best error=0.3404\n",
"[flaml.automl: 10-08 15:13:23] {1777} INFO - iteration 33, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:23] {1966} INFO - at 34.5s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3404\n",
"[flaml.automl: 10-08 15:13:23] {1777} INFO - iteration 34, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 55.1s,\testimator lgbm's best error=0.3343,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 35, current learner rf\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 55.2s,\testimator rf's best error=0.3724,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 36, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 55.4s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 37, current learner rf\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 55.5s,\testimator rf's best error=0.3724,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 38, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 55.7s,\testimator xgboost's best error=0.3612,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 39, current learner rf\n",
"[flaml.automl: 10-08 15:13:44] {1966} INFO - at 56.0s,\testimator rf's best error=0.3719,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:44] {1777} INFO - iteration 40, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:45] {1966} INFO - at 56.3s,\testimator xgboost's best error=0.3600,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:45] {1777} INFO - iteration 41, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:45] {1966} INFO - at 56.5s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:45] {1777} INFO - iteration 42, current learner lgbm\n",
"[flaml.automl: 10-08 15:13:56] {1966} INFO - at 67.1s,\testimator lgbm's best error=0.3343,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:56] {1777} INFO - iteration 43, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:56] {1966} INFO - at 67.4s,\testimator xgboost's best error=0.3558,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:56] {1777} INFO - iteration 44, current learner extra_tree\n",
"[flaml.automl: 10-08 15:13:56] {1966} INFO - at 67.5s,\testimator extra_tree's best error=0.3757,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:56] {1777} INFO - iteration 45, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:56] {1966} INFO - at 67.8s,\testimator xgboost's best error=0.3558,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:56] {1777} INFO - iteration 46, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:57] {1966} INFO - at 68.3s,\testimator xgboost's best error=0.3558,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:57] {1777} INFO - iteration 47, current learner xgboost\n",
"[flaml.automl: 10-08 15:13:57] {1966} INFO - at 68.6s,\testimator xgboost's best error=0.3558,\tbest estimator lgbm's best error=0.3343\n",
"[flaml.automl: 10-08 15:13:57] {1777} INFO - iteration 48, current learner lgbm\n",
"[flaml.automl: 10-08 15:14:08] {1966} INFO - at 79.8s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:14:08] {1777} INFO - iteration 49, current learner xgboost\n",
"[flaml.automl: 10-08 15:14:11] {1966} INFO - at 82.2s,\testimator xgboost's best error=0.3544,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:14:11] {1777} INFO - iteration 50, current learner extra_tree\n",
"[flaml.automl: 10-08 15:14:11] {1966} INFO - at 82.4s,\testimator extra_tree's best error=0.3753,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:14:11] {1777} INFO - iteration 51, current learner lgbm\n",
"[flaml.automl: 10-08 15:14:34] {1966} INFO - at 105.2s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:14:34] {1777} INFO - iteration 52, current learner lgbm\n",
"[flaml.automl: 10-08 15:14:43] {1966} INFO - at 114.1s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:14:43] {1777} INFO - iteration 53, current learner lgbm\n",
"[flaml.automl: 10-08 15:15:04] {1966} INFO - at 135.7s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:15:04] {1777} INFO - iteration 54, current learner lgbm\n",
"[flaml.automl: 10-08 15:15:09] {1966} INFO - at 140.0s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:15:09] {1777} INFO - iteration 55, current learner xgboost\n",
"[flaml.automl: 10-08 15:15:12] {1966} INFO - at 143.5s,\testimator xgboost's best error=0.3494,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:15:12] {1777} INFO - iteration 56, current learner lgbm\n",
"[flaml.automl: 10-08 15:16:03] {1966} INFO - at 194.7s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:03] {1777} INFO - iteration 57, current learner rf\n",
"[flaml.automl: 10-08 15:16:03] {1966} INFO - at 194.9s,\testimator rf's best error=0.3717,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:03] {1777} INFO - iteration 58, current learner xgboost\n",
"[flaml.automl: 10-08 15:16:05] {1966} INFO - at 196.9s,\testimator xgboost's best error=0.3494,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:05] {1777} INFO - iteration 59, current learner lgbm\n",
"[flaml.automl: 10-08 15:16:45] {1966} INFO - at 236.4s,\testimator lgbm's best error=0.3296,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:45] {1777} INFO - iteration 60, current learner xgboost\n",
"[flaml.automl: 10-08 15:16:47] {1966} INFO - at 238.8s,\testimator xgboost's best error=0.3494,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:47] {1777} INFO - iteration 61, current learner rf\n",
"[flaml.automl: 10-08 15:16:47] {1966} INFO - at 238.8s,\testimator rf's best error=0.3717,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:47] {1777} INFO - iteration 62, current learner rf\n",
"[flaml.automl: 10-08 15:16:47] {1966} INFO - at 238.9s,\testimator rf's best error=0.3717,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:47] {1777} INFO - iteration 63, current learner lrl1\n",
"/home/dmx/miniconda2/envs/test/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
"[flaml.automl: 10-08 15:16:48] {1966} INFO - at 239.2s,\testimator lrl1's best error=0.4339,\tbest estimator lgbm's best error=0.3296\n",
"[flaml.automl: 10-08 15:16:48] {1777} INFO - iteration 64, current learner lrl1\n",
"/home/dmx/miniconda2/envs/test/lib/python3.8/site-packages/sklearn/linear_model/_sag.py:328: ConvergenceWarning: The max_iter was reached which means the coef_ did not converge\n",
"Some experienced automl users may have a preferred model to tune or may already have a reasonably by-hand-tuned model before launching the automl experiment. They need to select optimal configurations for the customized model mixed with standard built-in learners. \n",
"\n",
"FLAML can easily incorporate customized/new learners (preferably with sklearn API) provided by users in a real-time manner, as demonstrated below."
"[Regularized Greedy Forest](https://arxiv.org/abs/1109.0887) (RGF) is a machine learning method currently not included in FLAML. The RGF has many tuning parameters, the most critical of which are: `[max_leaf, n_iter, n_tree_search, opt_interval, min_samples_leaf]`. To run a customized/new learner, the user needs to provide the following information:\n",
"* an implementation of the customized/new learner\n",
"* a list of hyperparameter names and types\n",
"* rough ranges of hyperparameters (i.e., upper/lower bounds)\n",
"* choose initial value corresponding to low cost for cost-related hyperparameters (e.g., initial value for max_leaf and n_iter should be small)\n",
"\n",
"In this example, the above information for RGF is wrapped in a python class called *MyRegularizedGreedyForest* that exposes the hyperparameters."
"[flaml.automl: 10-08 15:17:57] {1458} INFO - Data split method: stratified\n",
"[flaml.automl: 10-08 15:17:57] {1462} INFO - Evaluation method: holdout\n",
"[flaml.automl: 10-08 15:17:57] {1510} INFO - Minimizing error metric: 1-accuracy\n",
"[flaml.automl: 10-08 15:17:57] {1547} INFO - List of ML learners in AutoML Run: ['RGF', 'lgbm', 'rf', 'xgboost']\n",
"[flaml.automl: 10-08 15:17:57] {1777} INFO - iteration 0, current learner RGF\n",
"/home/dmx/miniconda2/envs/test/lib/python3.8/site-packages/rgf/utils.py:224: UserWarning: Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.\n",
"[flaml.automl: 10-08 15:18:06] {2144} INFO - not retraining because the time budget is too small.\n",
"[flaml.automl: 10-08 15:18:06] {1571} INFO - fit succeeded\n",
"[flaml.automl: 10-08 15:18:06] {1572} INFO - Time taken to find the best model: 8.79496955871582\n",
"[flaml.automl: 10-08 15:18:06] {1583} WARNING - Time taken to find the best model is 88% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"
"It's also easy to customize the optimization metric. As an example, we demonstrate with a custom metric function which combines training loss and test loss as the final loss to minimize."
"[flaml.automl: 10-08 15:18:18] {1571} INFO - fit succeeded\n",
"[flaml.automl: 10-08 15:18:18] {1572} INFO - Time taken to find the best model: 10.063513994216919\n",
"[flaml.automl: 10-08 15:18:18] {1583} WARNING - Time taken to find the best model is 101% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"