mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-01 10:19:46 +00:00
empty search space (#295)
fix the error when an empty dictionary is passed to BlendSearch as the search space.
This commit is contained in:
parent
49f9e9f86b
commit
00da79a90b
@ -219,7 +219,7 @@ class BlendSearch(Searcher):
|
||||
else:
|
||||
self._candidate_start_points = None
|
||||
self._time_budget_s, self._num_samples = time_budget_s, num_samples
|
||||
if space:
|
||||
if space is not None:
|
||||
self._init_search()
|
||||
|
||||
def set_search_properties(
|
||||
|
||||
@ -5,153 +5,164 @@ try:
|
||||
|
||||
assert ray_version >= "1.0.0"
|
||||
from ray.tune import sample
|
||||
|
||||
use_ray = True
|
||||
except (ImportError, AssertionError):
|
||||
from flaml.tune import sample
|
||||
|
||||
from flaml.searcher.suggestion import OptunaSearch, Searcher, ConcurrencyLimiter
|
||||
from flaml.searcher.blendsearch import BlendSearch, CFO, RandomSearch
|
||||
use_ray = False
|
||||
|
||||
def define_search_space(trial):
|
||||
trial.suggest_float("a", 6, 8)
|
||||
trial.suggest_float("b", 1e-4, 1e-2, log=True)
|
||||
from flaml.searcher.suggestion import OptunaSearch, Searcher, ConcurrencyLimiter
|
||||
from flaml.searcher.blendsearch import BlendSearch, CFO, RandomSearch
|
||||
|
||||
def test_searcher():
|
||||
searcher = Searcher()
|
||||
searcher = Searcher(metric=["m1", "m2"], mode=["max", "min"])
|
||||
searcher.set_search_properties(None, None, None)
|
||||
searcher.suggest = searcher.on_pause = searcher.on_unpause = lambda _: {}
|
||||
searcher.on_trial_complete = lambda trial_id, result, error: None
|
||||
searcher = ConcurrencyLimiter(searcher, max_concurrent=2, batch=True)
|
||||
searcher.suggest("t1")
|
||||
searcher.suggest("t2")
|
||||
searcher.on_pause("t1")
|
||||
searcher.on_unpause("t1")
|
||||
searcher.suggest("t3")
|
||||
searcher.on_trial_complete("t1", {})
|
||||
searcher.on_trial_complete("t2", {})
|
||||
searcher.set_state({})
|
||||
print(searcher.get_state())
|
||||
import optuna
|
||||
|
||||
config = {
|
||||
"a": optuna.distributions.UniformDistribution(6, 8),
|
||||
"b": optuna.distributions.LogUniformDistribution(1e-4, 1e-2),
|
||||
def define_search_space(trial):
|
||||
trial.suggest_float("a", 6, 8)
|
||||
trial.suggest_float("b", 1e-4, 1e-2, log=True)
|
||||
|
||||
|
||||
def test_searcher():
|
||||
searcher = Searcher()
|
||||
searcher = Searcher(metric=["m1", "m2"], mode=["max", "min"])
|
||||
searcher.set_search_properties(None, None, None)
|
||||
searcher.suggest = searcher.on_pause = searcher.on_unpause = lambda _: {}
|
||||
searcher.on_trial_complete = lambda trial_id, result, error: None
|
||||
searcher = ConcurrencyLimiter(searcher, max_concurrent=2, batch=True)
|
||||
searcher.suggest("t1")
|
||||
searcher.suggest("t2")
|
||||
searcher.on_pause("t1")
|
||||
searcher.on_unpause("t1")
|
||||
searcher.suggest("t3")
|
||||
searcher.on_trial_complete("t1", {})
|
||||
searcher.on_trial_complete("t2", {})
|
||||
searcher.set_state({})
|
||||
print(searcher.get_state())
|
||||
import optuna
|
||||
|
||||
config = {
|
||||
"a": optuna.distributions.UniformDistribution(6, 8),
|
||||
"b": optuna.distributions.LogUniformDistribution(1e-4, 1e-2),
|
||||
}
|
||||
searcher = OptunaSearch(
|
||||
config,
|
||||
points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
evaluated_rewards=[{"m": 2}],
|
||||
metric="m",
|
||||
mode="max",
|
||||
)
|
||||
config = {"a": sample.uniform(6, 8), "b": sample.loguniform(1e-4, 1e-2)}
|
||||
# searcher = OptunaSearch(
|
||||
# config,
|
||||
# points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
# evaluated_rewards=[{"m": 2}],
|
||||
# metric="m",
|
||||
# mode="max",
|
||||
# )
|
||||
searcher = OptunaSearch(
|
||||
define_search_space,
|
||||
points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
# evaluated_rewards=[{'m': 2}], metric='m', mode='max'
|
||||
mode="max",
|
||||
)
|
||||
# searcher = OptunaSearch()
|
||||
# searcher.set_search_properties('m', 'min', define_search_space)
|
||||
searcher.set_search_properties("m", "min", config)
|
||||
searcher.suggest("t1")
|
||||
searcher.on_trial_complete("t1", None, False)
|
||||
searcher.suggest("t2")
|
||||
searcher.on_trial_complete("t2", None, True)
|
||||
searcher.suggest("t3")
|
||||
searcher.on_trial_complete("t3", {"m": np.nan})
|
||||
searcher.save("test/tune/optuna.pickle")
|
||||
searcher.restore("test/tune/optuna.pickle")
|
||||
searcher = BlendSearch(
|
||||
metric="m", global_search_alg=searcher, metric_constraints=[("c", "<", 1)]
|
||||
)
|
||||
searcher.set_search_properties(
|
||||
metric="m2", config=config, setting={"time_budget_s": 0}
|
||||
)
|
||||
c = searcher.suggest("t1")
|
||||
searcher.on_trial_complete("t1", {"config": c}, True)
|
||||
c = searcher.suggest("t2")
|
||||
searcher.on_trial_complete("t2", {"config": c, "m2": 1, "c": 2, "time_total_s": 1})
|
||||
config1 = config.copy()
|
||||
config1["_choice_"] = 0
|
||||
searcher._expand_admissible_region(
|
||||
lower={"root": [{"a": 0.5}, {"a": 0.4}]},
|
||||
upper={"root": [{"a": 0.9}, {"a": 0.8}]},
|
||||
space={"root": config1},
|
||||
)
|
||||
searcher = CFO(
|
||||
metric="m",
|
||||
mode="min",
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
evaluated_rewards=[1, 1],
|
||||
)
|
||||
searcher.suggest("t1")
|
||||
searcher.suggest("t2")
|
||||
searcher.on_trial_result("t3", {})
|
||||
c = searcher.generate_parameters(1)
|
||||
searcher.receive_trial_result(1, c, {"default": 0})
|
||||
searcher.update_search_space(
|
||||
{
|
||||
"a": {
|
||||
"_value": [1, 2],
|
||||
"_type": "choice",
|
||||
},
|
||||
"b": {
|
||||
"_value": [1, 3],
|
||||
"_type": "randint",
|
||||
},
|
||||
"c": {
|
||||
"_value": [0.1, 3],
|
||||
"_type": "uniform",
|
||||
},
|
||||
"d": {
|
||||
"_value": [2, 8, 2],
|
||||
"_type": "quniform",
|
||||
},
|
||||
"e": {
|
||||
"_value": [2, 8],
|
||||
"_type": "loguniform",
|
||||
},
|
||||
"f": {
|
||||
"_value": [2, 8, 2],
|
||||
"_type": "qloguniform",
|
||||
},
|
||||
"g": {
|
||||
"_value": [0, 2],
|
||||
"_type": "normal",
|
||||
},
|
||||
"h": {
|
||||
"_value": [0, 2, 2],
|
||||
"_type": "qnormal",
|
||||
},
|
||||
}
|
||||
searcher = OptunaSearch(
|
||||
config,
|
||||
points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
evaluated_rewards=[{"m": 2}],
|
||||
metric="m",
|
||||
mode="max",
|
||||
)
|
||||
config = {"a": sample.uniform(6, 8), "b": sample.loguniform(1e-4, 1e-2)}
|
||||
searcher = OptunaSearch(
|
||||
config,
|
||||
points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
evaluated_rewards=[{"m": 2}],
|
||||
metric="m",
|
||||
mode="max",
|
||||
)
|
||||
searcher = OptunaSearch(
|
||||
define_search_space,
|
||||
points_to_evaluate=[{"a": 6, "b": 1e-3}],
|
||||
# evaluated_rewards=[{'m': 2}], metric='m', mode='max'
|
||||
mode="max",
|
||||
)
|
||||
searcher = OptunaSearch()
|
||||
# searcher.set_search_properties('m', 'min', define_search_space)
|
||||
searcher.set_search_properties("m", "min", config)
|
||||
searcher.suggest("t1")
|
||||
searcher.on_trial_complete("t1", None, False)
|
||||
searcher.suggest("t2")
|
||||
searcher.on_trial_complete("t2", None, True)
|
||||
searcher.suggest("t3")
|
||||
searcher.on_trial_complete("t3", {"m": np.nan})
|
||||
searcher.save("test/tune/optuna.pickle")
|
||||
searcher.restore("test/tune/optuna.pickle")
|
||||
searcher = BlendSearch(
|
||||
metric="m", global_search_alg=searcher, metric_constraints=[("c", "<", 1)]
|
||||
)
|
||||
searcher.set_search_properties(
|
||||
metric="m2", config=config, setting={"time_budget_s": 0}
|
||||
)
|
||||
c = searcher.suggest("t1")
|
||||
searcher.on_trial_complete("t1", {"config": c}, True)
|
||||
c = searcher.suggest("t2")
|
||||
searcher.on_trial_complete(
|
||||
"t2", {"config": c, "m2": 1, "c": 2, "time_total_s": 1}
|
||||
)
|
||||
config1 = config.copy()
|
||||
config1["_choice_"] = 0
|
||||
searcher._expand_admissible_region(
|
||||
lower={"root": [{"a": 0.5}, {"a": 0.4}]},
|
||||
upper={"root": [{"a": 0.9}, {"a": 0.8}]},
|
||||
space={"root": config1},
|
||||
)
|
||||
searcher = CFO(
|
||||
metric="m",
|
||||
mode="min",
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
evaluated_rewards=[1, 1],
|
||||
)
|
||||
searcher.suggest("t1")
|
||||
searcher.suggest("t2")
|
||||
searcher.on_trial_result("t3", {})
|
||||
c = searcher.generate_parameters(1)
|
||||
searcher.receive_trial_result(1, c, {"default": 0})
|
||||
searcher.update_search_space(
|
||||
{
|
||||
"a": {
|
||||
"_value": [1, 2],
|
||||
"_type": "choice",
|
||||
},
|
||||
"b": {
|
||||
"_value": [1, 3],
|
||||
"_type": "randint",
|
||||
},
|
||||
"c": {
|
||||
"_value": [0.1, 3],
|
||||
"_type": "uniform",
|
||||
},
|
||||
"d": {
|
||||
"_value": [2, 8, 2],
|
||||
"_type": "quniform",
|
||||
},
|
||||
"e": {
|
||||
"_value": [2, 8],
|
||||
"_type": "loguniform",
|
||||
},
|
||||
"f": {
|
||||
"_value": [2, 8, 2],
|
||||
"_type": "qloguniform",
|
||||
},
|
||||
"g": {
|
||||
"_value": [0, 2],
|
||||
"_type": "normal",
|
||||
},
|
||||
"h": {
|
||||
"_value": [0, 2, 2],
|
||||
"_type": "qnormal",
|
||||
},
|
||||
}
|
||||
)
|
||||
np.random.seed(7654321)
|
||||
searcher = RandomSearch(
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
)
|
||||
print(searcher.suggest("t1"))
|
||||
print(searcher.suggest("t2"))
|
||||
print(searcher.suggest("t3"))
|
||||
print(searcher.suggest("t4"))
|
||||
searcher.on_trial_complete({"t1"}, {})
|
||||
searcher.on_trial_result({"t2"}, {})
|
||||
np.random.seed(654321)
|
||||
searcher = RandomSearch(
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
)
|
||||
print(searcher.suggest("t1"))
|
||||
print(searcher.suggest("t2"))
|
||||
print(searcher.suggest("t3"))
|
||||
)
|
||||
np.random.seed(7654321)
|
||||
searcher = RandomSearch(
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
)
|
||||
print(searcher.suggest("t1"))
|
||||
print(searcher.suggest("t2"))
|
||||
print(searcher.suggest("t3"))
|
||||
print(searcher.suggest("t4"))
|
||||
searcher.on_trial_complete({"t1"}, {})
|
||||
searcher.on_trial_result({"t2"}, {})
|
||||
np.random.seed(654321)
|
||||
searcher = RandomSearch(
|
||||
space=config,
|
||||
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
|
||||
)
|
||||
print(searcher.suggest("t1"))
|
||||
print(searcher.suggest("t2"))
|
||||
print(searcher.suggest("t3"))
|
||||
searcher = RandomSearch(space={})
|
||||
print(searcher.suggest("t1"))
|
||||
searcher = BlendSearch(space={})
|
||||
print(searcher.suggest("t1"))
|
||||
from flaml import tune
|
||||
|
||||
tune.run(lambda x: 1, config={}, use_ray=use_ray)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user