mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-11-04 03:39:52 +00:00 
			
		
		
		
	add periods
This commit is contained in:
		
							parent
							
								
									c4d5986ee8
								
							
						
					
					
						commit
						03bc62363f
					
				@ -205,7 +205,7 @@ def concat(X1, X2):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class DataTransformer:
 | 
					class DataTransformer:
 | 
				
			||||||
    """Transform input training data"""
 | 
					    """Transform input training data."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def fit_transform(self, X, y, task):
 | 
					    def fit_transform(self, X, y, task):
 | 
				
			||||||
        """Fit transformer and process the input training data according to the task type.
 | 
					        """Fit transformer and process the input training data according to the task type.
 | 
				
			||||||
 | 
				
			|||||||
@ -169,7 +169,7 @@ class AutoVW:
 | 
				
			|||||||
        self._trial_runner.step(data_sample, (self._y_predict, self._best_trial))
 | 
					        self._trial_runner.step(data_sample, (self._y_predict, self._best_trial))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _select_best_trial(self):
 | 
					    def _select_best_trial(self):
 | 
				
			||||||
        """Select a best trial from the running trials accoring to the _model_select_policy"""
 | 
					        """Select a best trial from the running trials accoring to the _model_select_policy."""
 | 
				
			||||||
        best_score = (
 | 
					        best_score = (
 | 
				
			||||||
            float("+inf") if self._model_selection_mode == "min" else float("-inf")
 | 
					            float("+inf") if self._model_selection_mode == "min" else float("-inf")
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
				
			|||||||
@ -4,7 +4,7 @@ import time
 | 
				
			|||||||
import math
 | 
					import math
 | 
				
			||||||
import copy
 | 
					import copy
 | 
				
			||||||
import collections
 | 
					import collections
 | 
				
			||||||
from typing import Optional
 | 
					from typing import Optional, Union
 | 
				
			||||||
from sklearn.metrics import mean_squared_error, mean_absolute_error
 | 
					from sklearn.metrics import mean_squared_error, mean_absolute_error
 | 
				
			||||||
from flaml.tune import Trial
 | 
					from flaml.tune import Trial
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -113,7 +113,7 @@ class OnlineResult:
 | 
				
			|||||||
    def _update_loss_cb(
 | 
					    def _update_loss_cb(
 | 
				
			||||||
        self, bound_of_range, data_dim, bound_name="sample_complexity_bound"
 | 
					        self, bound_of_range, data_dim, bound_name="sample_complexity_bound"
 | 
				
			||||||
    ):
 | 
					    ):
 | 
				
			||||||
        """Calculate bound coef"""
 | 
					        """Calculate bound coef."""
 | 
				
			||||||
        if bound_name == "sample_complexity_bound":
 | 
					        if bound_name == "sample_complexity_bound":
 | 
				
			||||||
            # set the coefficient in the loss bound
 | 
					            # set the coefficient in the loss bound
 | 
				
			||||||
            if "mae" in self.result_type_name:
 | 
					            if "mae" in self.result_type_name:
 | 
				
			||||||
@ -313,7 +313,6 @@ class VowpalWabbitTrial(BaseOnlineTrial):
 | 
				
			|||||||
            is_checked_under_current_champion (bool): indicates whether this trials has
 | 
					            is_checked_under_current_champion (bool): indicates whether this trials has
 | 
				
			||||||
                been paused under the current champion.
 | 
					                been paused under the current champion.
 | 
				
			||||||
            trial_id (str): id of the trial (if None, it will be generated in the constructor).
 | 
					            trial_id (str): id of the trial (if None, it will be generated in the constructor).
 | 
				
			||||||
 | 
					 | 
				
			||||||
        """
 | 
					        """
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            from vowpalwabbit import pyvw
 | 
					            from vowpalwabbit import pyvw
 | 
				
			||||||
@ -345,7 +344,7 @@ class VowpalWabbitTrial(BaseOnlineTrial):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
    def _config_to_id(config):
 | 
					    def _config_to_id(config):
 | 
				
			||||||
        """Generate an id for the provided config"""
 | 
					        """Generate an id for the provided config."""
 | 
				
			||||||
        # sort config keys
 | 
					        # sort config keys
 | 
				
			||||||
        sorted_k_list = sorted(list(config.keys()))
 | 
					        sorted_k_list = sorted(list(config.keys()))
 | 
				
			||||||
        config_id_full = ""
 | 
					        config_id_full = ""
 | 
				
			||||||
@ -439,7 +438,7 @@ class VowpalWabbitTrial(BaseOnlineTrial):
 | 
				
			|||||||
        return loss_func([y_true], [y_pred])
 | 
					        return loss_func([y_true], [y_pred])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _update_y_range(self, y):
 | 
					    def _update_y_range(self, y):
 | 
				
			||||||
        """Maintain running observed minimum and maximum target value"""
 | 
					        """Maintain running observed minimum and maximum target value."""
 | 
				
			||||||
        if self._y_min_observed is None or y < self._y_min_observed:
 | 
					        if self._y_min_observed is None or y < self._y_min_observed:
 | 
				
			||||||
            self._y_min_observed = y
 | 
					            self._y_min_observed = y
 | 
				
			||||||
        if self._y_max_observed is None or y > self._y_max_observed:
 | 
					        if self._y_max_observed is None or y > self._y_max_observed:
 | 
				
			||||||
@ -447,9 +446,9 @@ class VowpalWabbitTrial(BaseOnlineTrial):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    @staticmethod
 | 
					    @staticmethod
 | 
				
			||||||
    def _get_dim_from_ns(
 | 
					    def _get_dim_from_ns(
 | 
				
			||||||
        namespace_feature_dim: dict, namespace_interactions: [set, list]
 | 
					        namespace_feature_dim: dict, namespace_interactions: Union[set, list]
 | 
				
			||||||
    ):
 | 
					    ):
 | 
				
			||||||
        """Get the dimensionality of the corresponding feature of input namespace set"""
 | 
					        """Get the dimensionality of the corresponding feature of input namespace set."""
 | 
				
			||||||
        total_dim = sum(namespace_feature_dim.values())
 | 
					        total_dim = sum(namespace_feature_dim.values())
 | 
				
			||||||
        if namespace_interactions:
 | 
					        if namespace_interactions:
 | 
				
			||||||
            for f in namespace_interactions:
 | 
					            for f in namespace_interactions:
 | 
				
			||||||
 | 
				
			|||||||
@ -89,7 +89,7 @@ class OnlineSuccessiveDoublingScheduler(OnlineScheduler):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class ChaChaScheduler(OnlineSuccessiveDoublingScheduler):
 | 
					class ChaChaScheduler(OnlineSuccessiveDoublingScheduler):
 | 
				
			||||||
    """Keep the top performing learners running
 | 
					    """Keep the top performing learners running.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    Methods:
 | 
					    Methods:
 | 
				
			||||||
        * on_trial_result(trial_runner, trial, result):
 | 
					        * on_trial_result(trial_runner, trial, result):
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user