mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-03 03:10:04 +00:00
add periods
This commit is contained in:
parent
c4d5986ee8
commit
03bc62363f
@ -205,7 +205,7 @@ def concat(X1, X2):
|
|||||||
|
|
||||||
|
|
||||||
class DataTransformer:
|
class DataTransformer:
|
||||||
"""Transform input training data"""
|
"""Transform input training data."""
|
||||||
|
|
||||||
def fit_transform(self, X, y, task):
|
def fit_transform(self, X, y, task):
|
||||||
"""Fit transformer and process the input training data according to the task type.
|
"""Fit transformer and process the input training data according to the task type.
|
||||||
|
|||||||
@ -169,7 +169,7 @@ class AutoVW:
|
|||||||
self._trial_runner.step(data_sample, (self._y_predict, self._best_trial))
|
self._trial_runner.step(data_sample, (self._y_predict, self._best_trial))
|
||||||
|
|
||||||
def _select_best_trial(self):
|
def _select_best_trial(self):
|
||||||
"""Select a best trial from the running trials accoring to the _model_select_policy"""
|
"""Select a best trial from the running trials accoring to the _model_select_policy."""
|
||||||
best_score = (
|
best_score = (
|
||||||
float("+inf") if self._model_selection_mode == "min" else float("-inf")
|
float("+inf") if self._model_selection_mode == "min" else float("-inf")
|
||||||
)
|
)
|
||||||
|
|||||||
@ -4,7 +4,7 @@ import time
|
|||||||
import math
|
import math
|
||||||
import copy
|
import copy
|
||||||
import collections
|
import collections
|
||||||
from typing import Optional
|
from typing import Optional, Union
|
||||||
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
||||||
from flaml.tune import Trial
|
from flaml.tune import Trial
|
||||||
|
|
||||||
@ -113,7 +113,7 @@ class OnlineResult:
|
|||||||
def _update_loss_cb(
|
def _update_loss_cb(
|
||||||
self, bound_of_range, data_dim, bound_name="sample_complexity_bound"
|
self, bound_of_range, data_dim, bound_name="sample_complexity_bound"
|
||||||
):
|
):
|
||||||
"""Calculate bound coef"""
|
"""Calculate bound coef."""
|
||||||
if bound_name == "sample_complexity_bound":
|
if bound_name == "sample_complexity_bound":
|
||||||
# set the coefficient in the loss bound
|
# set the coefficient in the loss bound
|
||||||
if "mae" in self.result_type_name:
|
if "mae" in self.result_type_name:
|
||||||
@ -313,7 +313,6 @@ class VowpalWabbitTrial(BaseOnlineTrial):
|
|||||||
is_checked_under_current_champion (bool): indicates whether this trials has
|
is_checked_under_current_champion (bool): indicates whether this trials has
|
||||||
been paused under the current champion.
|
been paused under the current champion.
|
||||||
trial_id (str): id of the trial (if None, it will be generated in the constructor).
|
trial_id (str): id of the trial (if None, it will be generated in the constructor).
|
||||||
|
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
from vowpalwabbit import pyvw
|
from vowpalwabbit import pyvw
|
||||||
@ -345,7 +344,7 @@ class VowpalWabbitTrial(BaseOnlineTrial):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _config_to_id(config):
|
def _config_to_id(config):
|
||||||
"""Generate an id for the provided config"""
|
"""Generate an id for the provided config."""
|
||||||
# sort config keys
|
# sort config keys
|
||||||
sorted_k_list = sorted(list(config.keys()))
|
sorted_k_list = sorted(list(config.keys()))
|
||||||
config_id_full = ""
|
config_id_full = ""
|
||||||
@ -439,7 +438,7 @@ class VowpalWabbitTrial(BaseOnlineTrial):
|
|||||||
return loss_func([y_true], [y_pred])
|
return loss_func([y_true], [y_pred])
|
||||||
|
|
||||||
def _update_y_range(self, y):
|
def _update_y_range(self, y):
|
||||||
"""Maintain running observed minimum and maximum target value"""
|
"""Maintain running observed minimum and maximum target value."""
|
||||||
if self._y_min_observed is None or y < self._y_min_observed:
|
if self._y_min_observed is None or y < self._y_min_observed:
|
||||||
self._y_min_observed = y
|
self._y_min_observed = y
|
||||||
if self._y_max_observed is None or y > self._y_max_observed:
|
if self._y_max_observed is None or y > self._y_max_observed:
|
||||||
@ -447,9 +446,9 @@ class VowpalWabbitTrial(BaseOnlineTrial):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _get_dim_from_ns(
|
def _get_dim_from_ns(
|
||||||
namespace_feature_dim: dict, namespace_interactions: [set, list]
|
namespace_feature_dim: dict, namespace_interactions: Union[set, list]
|
||||||
):
|
):
|
||||||
"""Get the dimensionality of the corresponding feature of input namespace set"""
|
"""Get the dimensionality of the corresponding feature of input namespace set."""
|
||||||
total_dim = sum(namespace_feature_dim.values())
|
total_dim = sum(namespace_feature_dim.values())
|
||||||
if namespace_interactions:
|
if namespace_interactions:
|
||||||
for f in namespace_interactions:
|
for f in namespace_interactions:
|
||||||
|
|||||||
@ -89,7 +89,7 @@ class OnlineSuccessiveDoublingScheduler(OnlineScheduler):
|
|||||||
|
|
||||||
|
|
||||||
class ChaChaScheduler(OnlineSuccessiveDoublingScheduler):
|
class ChaChaScheduler(OnlineSuccessiveDoublingScheduler):
|
||||||
"""Keep the top performing learners running
|
"""Keep the top performing learners running.
|
||||||
|
|
||||||
Methods:
|
Methods:
|
||||||
* on_trial_result(trial_runner, trial, result):
|
* on_trial_result(trial_runner, trial, result):
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user