mirror of
https://github.com/microsoft/autogen.git
synced 2025-11-16 18:14:30 +00:00
X.copy() in the process method (#78)
* X.copy() in the transformer method. * update version 0.3.4
This commit is contained in:
parent
b6f57894ef
commit
068fb9f5c2
@ -214,6 +214,7 @@ class DataTransformer:
|
|||||||
X[column] = X[column].fillna('__NAN__')
|
X[column] = X[column].fillna('__NAN__')
|
||||||
cat_columns.append(column)
|
cat_columns.append(column)
|
||||||
else:
|
else:
|
||||||
|
# print(X[column].dtype.name)
|
||||||
if X[column].nunique(dropna=True) < 2:
|
if X[column].nunique(dropna=True) < 2:
|
||||||
X.drop(columns=column, inplace=True)
|
X.drop(columns=column, inplace=True)
|
||||||
drop = True
|
drop = True
|
||||||
@ -236,8 +237,8 @@ class DataTransformer:
|
|||||||
SimpleImputer(missing_values=np.nan, strategy='median'),
|
SimpleImputer(missing_values=np.nan, strategy='median'),
|
||||||
X_num.columns)])
|
X_num.columns)])
|
||||||
X[num_columns] = self.transformer.fit_transform(X_num)
|
X[num_columns] = self.transformer.fit_transform(X_num)
|
||||||
self._cat_columns, self._num_columns, self._datetime_columns = \
|
self._cat_columns, self._num_columns, self._datetime_columns = cat_columns, \
|
||||||
cat_columns, num_columns, datetime_columns
|
num_columns, datetime_columns
|
||||||
self._drop = drop
|
self._drop = drop
|
||||||
|
|
||||||
if task == 'regression':
|
if task == 'regression':
|
||||||
@ -249,13 +250,14 @@ class DataTransformer:
|
|||||||
return X, y
|
return X, y
|
||||||
|
|
||||||
def transform(self, X):
|
def transform(self, X):
|
||||||
|
X = X.copy()
|
||||||
if isinstance(X, pd.DataFrame):
|
if isinstance(X, pd.DataFrame):
|
||||||
cat_columns, num_columns, datetime_columns = \
|
cat_columns, num_columns, datetime_columns = self._cat_columns, \
|
||||||
self._cat_columns, self._num_columns, self._datetime_columns
|
self._num_columns, self._datetime_columns
|
||||||
|
X = X[cat_columns + num_columns].copy()
|
||||||
if datetime_columns:
|
if datetime_columns:
|
||||||
for dt_column in datetime_columns:
|
for dt_column in datetime_columns:
|
||||||
X[dt_column] = X[dt_column].map(datetime.toordinal)
|
X[dt_column] = X[dt_column].map(datetime.toordinal)
|
||||||
X = X[cat_columns + num_columns].copy()
|
|
||||||
for column in cat_columns:
|
for column in cat_columns:
|
||||||
# print(column, X[column].dtype.name)
|
# print(column, X[column].dtype.name)
|
||||||
if X[column].dtype.name == 'object':
|
if X[column].dtype.name == 'object':
|
||||||
@ -273,3 +275,4 @@ class DataTransformer:
|
|||||||
X_num.columns = range(X_num.shape[1])
|
X_num.columns = range(X_num.shape[1])
|
||||||
X[num_columns] = self.transformer.transform(X_num)
|
X[num_columns] = self.transformer.transform(X_num)
|
||||||
return X
|
return X
|
||||||
|
|
||||||
|
|||||||
@ -1 +1 @@
|
|||||||
__version__ = "0.3.3"
|
__version__ = "0.3.4"
|
||||||
|
|||||||
@ -239,6 +239,8 @@ class TestAutoML(unittest.TestCase):
|
|||||||
y = np.array([0, 1])
|
y = np.array([0, 1])
|
||||||
automl_experiment.fit(X_train=fake_df, X_val=fake_df, y_train=y, y_val=y, **automl_settings)
|
automl_experiment.fit(X_train=fake_df, X_val=fake_df, y_train=y, y_val=y, **automl_settings)
|
||||||
|
|
||||||
|
y_pred = automl_experiment.predict(fake_df)
|
||||||
|
|
||||||
def test_regression(self):
|
def test_regression(self):
|
||||||
|
|
||||||
automl_experiment = AutoML()
|
automl_experiment = AutoML()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user