Merge branch 'main' into main

This commit is contained in:
zsk 2022-08-21 13:58:18 -04:00 committed by GitHub
commit 126c41f3ee
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 97 additions and 37 deletions

View File

@ -627,6 +627,8 @@ class AutoML(BaseEstimator):
keep_search_state: boolean, default=False | Whether to keep data needed
for model search after fit(). By default the state is deleted for
space saving.
preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint
on disk when deleting automl. By default the checkpoint is preserved.
early_stop: boolean, default=False | Whether to stop early if the
search is considered to converge.
append_log: boolean, default=False | Whetehr to directly append the log
@ -726,6 +728,7 @@ class AutoML(BaseEstimator):
settings["starting_points"] = settings.get("starting_points", "static")
settings["n_concurrent_trials"] = settings.get("n_concurrent_trials", 1)
settings["keep_search_state"] = settings.get("keep_search_state", False)
settings["preserve_checkpoint"] = settings.get("preserve_checkpoint", True)
settings["early_stop"] = settings.get("early_stop", False)
settings["append_log"] = settings.get("append_log", False)
settings["min_sample_size"] = settings.get("min_sample_size", MIN_SAMPLE_TRAIN)
@ -1576,6 +1579,7 @@ class AutoML(BaseEstimator):
auto_augment=None,
custom_hp=None,
skip_transform=None,
preserve_checkpoint=True,
fit_kwargs_by_estimator=None,
**fit_kwargs,
):
@ -1704,10 +1708,19 @@ class AutoML(BaseEstimator):
self._state.fit_kwargs = fit_kwargs
self._state.custom_hp = custom_hp or self._settings.get("custom_hp")
self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform
self._skip_transform = (
self._settings.get("skip_transform")
if skip_transform is None
else skip_transform
)
self._state.fit_kwargs_by_estimator = (
fit_kwargs_by_estimator or self._settings.get("fit_kwargs_by_estimator")
)
self.preserve_checkpoint = (
self._settings.get("preserve_checkpoint")
if preserve_checkpoint is None
else preserve_checkpoint
)
self._validate_data(X_train, y_train, dataframe, label, groups=groups)
logger.info("log file name {}".format(log_file_name))
@ -2123,6 +2136,7 @@ class AutoML(BaseEstimator):
seed=None,
n_concurrent_trials=None,
keep_search_state=None,
preserve_checkpoint=True,
early_stop=None,
append_log=None,
auto_augment=None,
@ -2303,6 +2317,8 @@ class AutoML(BaseEstimator):
keep_search_state: boolean, default=False | Whether to keep data needed
for model search after fit(). By default the state is deleted for
space saving.
preserve_checkpoint: boolean, default=True | Whether to preserve the saved checkpoint
on disk when deleting automl. By default the checkpoint is preserved.
early_stop: boolean, default=False | Whether to stop early if the
search is considered to converge.
append_log: boolean, default=False | Whetehr to directly append the log
@ -2464,6 +2480,11 @@ class AutoML(BaseEstimator):
if keep_search_state is None
else keep_search_state
)
self.preserve_checkpoint = (
self._settings.get("preserve_checkpoint")
if preserve_checkpoint is None
else preserve_checkpoint
)
early_stop = (
self._settings.get("early_stop") if early_stop is None else early_stop
)
@ -2513,7 +2534,11 @@ class AutoML(BaseEstimator):
self._state.fit_kwargs = fit_kwargs
custom_hp = custom_hp or self._settings.get("custom_hp")
self._skip_transform = self._settings.get("skip_transform") if skip_transform is None else skip_transform
self._skip_transform = (
self._settings.get("skip_transform")
if skip_transform is None
else skip_transform
)
fit_kwargs_by_estimator = fit_kwargs_by_estimator or self._settings.get(
"fit_kwargs_by_estimator"
)
@ -3566,7 +3591,8 @@ class AutoML(BaseEstimator):
and self._trained_estimator
and hasattr(self._trained_estimator, "cleanup")
):
self._trained_estimator.cleanup()
if self.preserve_checkpoint is False:
self._trained_estimator.cleanup()
del self._trained_estimator
def _select_estimator(self, estimator_list):

View File

@ -1626,15 +1626,26 @@ class CatBoostEstimator(BaseEstimator):
cat_features = list(X_train.select_dtypes(include="category").columns)
else:
cat_features = []
n = max(int(len(y_train) * 0.9), len(y_train) - 1000)
use_best_model = kwargs.get("use_best_model", True)
n = (
max(int(len(y_train) * 0.9), len(y_train) - 1000)
if use_best_model
else len(y_train)
)
X_tr, y_tr = X_train[:n], y_train[:n]
from catboost import Pool, __version__
eval_set = (
Pool(data=X_train[n:], label=y_train[n:], cat_features=cat_features)
if use_best_model
else None
)
if "sample_weight" in kwargs:
weight = kwargs["sample_weight"]
if weight is not None:
kwargs["sample_weight"] = weight[:n]
else:
weight = None
from catboost import Pool, __version__
model = self.estimator_class(train_dir=train_dir, **self.params)
if __version__ >= "0.26":
@ -1642,10 +1653,10 @@ class CatBoostEstimator(BaseEstimator):
X_tr,
y_tr,
cat_features=cat_features,
eval_set=Pool(
data=X_train[n:], label=y_train[n:], cat_features=cat_features
eval_set=eval_set,
callbacks=CatBoostEstimator._callbacks(
start_time, deadline, FREE_MEM_RATIO if use_best_model else None
),
callbacks=CatBoostEstimator._callbacks(start_time, deadline),
**kwargs,
)
else:
@ -1653,9 +1664,7 @@ class CatBoostEstimator(BaseEstimator):
X_tr,
y_tr,
cat_features=cat_features,
eval_set=Pool(
data=X_train[n:], label=y_train[n:], cat_features=cat_features
),
eval_set=eval_set,
**kwargs,
)
shutil.rmtree(train_dir, ignore_errors=True)
@ -1667,7 +1676,7 @@ class CatBoostEstimator(BaseEstimator):
return train_time
@classmethod
def _callbacks(cls, start_time, deadline):
def _callbacks(cls, start_time, deadline, free_mem_ratio):
class ResourceLimit:
def after_iteration(self, info) -> bool:
now = time.time()
@ -1675,9 +1684,9 @@ class CatBoostEstimator(BaseEstimator):
self._time_per_iter = now - start_time
if now + self._time_per_iter > deadline:
return False
if psutil is not None:
if psutil is not None and free_mem_ratio is not None:
mem = psutil.virtual_memory()
if mem.available / mem.total < FREE_MEM_RATIO:
if mem.available / mem.total < free_mem_ratio:
return False
return True # can continue

View File

@ -1 +1 @@
__version__ = "1.0.10"
__version__ = "1.0.11"

View File

@ -39,7 +39,7 @@
"metadata": {},
"outputs": [],
"source": [
"%pip install flaml[notebook]==1.0.8"
"%pip install flaml[notebook]==1.0.10"
]
},
{
@ -651,6 +651,7 @@
"metadata": {},
"outputs": [],
"source": [
"# uncomment the following line if optuna is not installed\n",
"# %pip install optuna==2.8.0"
]
},

View File

@ -98,8 +98,8 @@ class TestRegression(unittest.TestCase):
y_train = np.random.uniform(size=300)
X_val = scipy.sparse.random(100, 900, density=0.0001)
y_val = np.random.uniform(size=100)
automl_experiment = AutoML()
automl_settings = {
automl = AutoML()
settings = {
"time_budget": 2,
"metric": "mae",
"task": "regression",
@ -110,23 +110,34 @@ class TestRegression(unittest.TestCase):
"verbose": 0,
"early_stop": True,
}
automl_experiment.fit(
X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
**automl_settings
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **settings
)
assert automl._state.X_val.shape == X_val.shape
print(automl.predict(X_train))
print(automl.model)
print(automl.config_history)
print(automl.best_model_for_estimator("rf"))
print(automl.best_iteration)
print(automl.best_estimator)
print(automl.best_config)
print(automl.best_loss)
print(automl.best_config_train_time)
settings.update(
{
"estimator_list": ["catboost"],
"keep_search_state": False,
"model_history": False,
"use_best_model": False,
"time_budget": None,
"max_iter": 2,
"custom_hp": {"catboost": {"n_estimators": {"domain": 100}}},
}
)
automl.fit(
X_train=X_train, y_train=y_train, X_val=X_val, y_val=y_val, **settings
)
assert automl_experiment._state.X_val.shape == X_val.shape
print(automl_experiment.predict(X_train))
print(automl_experiment.model)
print(automl_experiment.config_history)
print(automl_experiment.best_model_for_estimator("rf"))
print(automl_experiment.best_iteration)
print(automl_experiment.best_estimator)
print(automl_experiment.best_config)
print(automl_experiment.best_loss)
print(automl_experiment.best_config_train_time)
def test_parallel(self, hpo_method=None):
automl_experiment = AutoML()

View File

@ -13,6 +13,7 @@ def test_hf_data():
automl = AutoML()
automl_settings = get_automl_settings()
automl_settings["preserve_checkpoint"] = False
try:
automl.fit(
@ -68,6 +69,8 @@ def test_hf_data():
automl.predict_proba(X_test)
print(automl.classes_)
del automl
if __name__ == "__main__":
test_hf_data()

View File

@ -1,8 +1,15 @@
# Frequently Asked Questions
### [Guidelines on how to set a hyperparameter search space](Use-Cases/Tune-User-Defined-Function#details-and-guidelines-on-hyperparameter-search-space)
### [Guidelines on parallel vs seqential tuning](Use-Cases/Task-Oriented-AutoML#guidelines-on-parallel-vs-sequential-tuning)
### [Guidelines on creating and tuning a custom estimator](Use-Cases/Task-Oriented-AutoML#guidelines-on-tuning-a-custom-estimator)
### About `low_cost_partial_config` in `tune`.
- Definition and purpose: The `low_cost_partial_config` is a dictionary of subset of the hyperparameter coordinates whose value corresponds to a configuration with known low-cost (i.e., low computation cost for training the corresponding model). The concept of low/high-cost is meaningful in the case where a subset of the hyperparameters to tune directly affects the computation cost for training the model. For example, `n_estimators` and `max_leaves` are known to affect the training cost of tree-based learners. We call this subset of hyperparameters, *cost-related hyperparameters*. In such scenarios, if you are aware of low-cost configurations for the cost-related hyperparameters, you are recommended to set them as the `low_cost_partial_config`. Using the tree-based method example again, since we know that small `n_estimators` and `max_leaves` generally correspond to simpler models and thus lower cost, we set `{'n_estimators': 4, 'max_leaves': 4}` as the `low_cost_partial_config` by default (note that `4` is the lower bound of search space for these two hyperparameters), e.g., in [LGBM](https://github.com/microsoft/FLAML/blob/main/flaml/model.py#L215). Configuring `low_cost_partial_config` helps the search algorithms make more cost-efficient choices.
- Definition and purpose: The `low_cost_partial_config` is a dictionary of subset of the hyperparameter coordinates whose value corresponds to a configuration with known low-cost (i.e., low computation cost for training the corresponding model). The concept of low/high-cost is meaningful in the case where a subset of the hyperparameters to tune directly affects the computation cost for training the model. For example, `n_estimators` and `max_leaves` are known to affect the training cost of tree-based learners. We call this subset of hyperparameters, *cost-related hyperparameters*. In such scenarios, if you are aware of low-cost configurations for the cost-related hyperparameters, you are recommended to set them as the `low_cost_partial_config`. Using the tree-based method example again, since we know that small `n_estimators` and `max_leaves` generally correspond to simpler models and thus lower cost, we set `{'n_estimators': 4, 'max_leaves': 4}` as the `low_cost_partial_config` by default (note that `4` is the lower bound of search space for these two hyperparameters), e.g., in [LGBM](https://github.com/microsoft/FLAML/blob/main/flaml/model.py#L215). Configuring `low_cost_partial_config` helps the search algorithms make more cost-efficient choices.
In AutoML, the `low_cost_init_value` in `search_space()` function for each estimator serves the same role.
- Usage in practice: It is recommended to configure it if there are cost-related hyperparameters in your tuning task and you happen to know the low-cost values for them, but it is not required (It is fine to leave it the default value, i.e., `None`).

View File

@ -125,8 +125,9 @@ The estimator list can contain one or more estimator names, each corresponding t
- tuning an estimator that is not built-in;
- customizing search space for a built-in estimator.
To tune a custom estimator that is not built-in, you need to:
#### Guidelines on tuning a custom estimator
To tune a custom estimator that is not built-in, you need to:
1. Build a custom estimator by inheritting [`flaml.model.BaseEstimator`](../reference/model#baseestimator-objects) or a derived class.
For example, if you have a estimator class with scikit-learn style `fit()` and `predict()` functions, you only need to set `self.estimator_class` to be that class in your constructor.
@ -280,7 +281,9 @@ Some constraints on the estimator can be implemented via the custom learner. For
class MonotonicXGBoostEstimator(XGBoostSklearnEstimator):
@classmethod
def search_space(**args):
return super().search_space(**args).update({"monotone_constraints": "(1, -1)"})
space = super().search_space(**args)
space.update({"monotone_constraints": {"domain": "(1, -1)"}})
return space
```
It adds a monotonicity constraint to XGBoost. This approach can be used to set any constraint that is an argument in the underlying estimator's constructor.