mirror of
				https://github.com/microsoft/autogen.git
				synced 2025-10-31 09:50:11 +00:00 
			
		
		
		
	pred_time_limit clarification and logging (#319)
* pred_time_limit clarification * log prediction time * handle ChunkedEncodingError in test
This commit is contained in:
		
							parent
							
								
									fb59bb9928
								
							
						
					
					
						commit
						18230ed22f
					
				| @ -495,6 +495,7 @@ class AutoML(BaseEstimator): | ||||
|                 metric for each model. | ||||
|             mem_thres: A float of the memory size constraint in bytes. | ||||
|             pred_time_limit: A float of the prediction latency constraint in seconds. | ||||
|                 It refers to the average prediction time per row in validation data. | ||||
|             train_time_limit: A float of the training time constraint in seconds. | ||||
|             verbose: int, default=3 | Controls the verbosity, higher means more | ||||
|                 messages. | ||||
| @ -1751,6 +1752,7 @@ class AutoML(BaseEstimator): | ||||
|                 metric for each model. | ||||
|             mem_thres: A float of the memory size constraint in bytes. | ||||
|             pred_time_limit: A float of the prediction latency constraint in seconds. | ||||
|                 It refers to the average prediction time per row in validation data. | ||||
|             train_time_limit: A float of the training time constraint in seconds. | ||||
|             X_val: None or a numpy array or a pandas dataframe of validation data. | ||||
|             y_val: None or a numpy array or a pandas series of validation labels. | ||||
|  | ||||
| @ -206,7 +206,7 @@ def _eval_estimator( | ||||
|         val_loss = sklearn_metric_loss_score( | ||||
|             eval_metric, val_pred_y, y_val, labels, weight_val, groups_val | ||||
|         ) | ||||
|         metric_for_logging = {} | ||||
|         metric_for_logging = {"pred_time": pred_time} | ||||
|         if log_training_metric: | ||||
|             train_pred_y = get_y_pred(estimator, X_train, eval_metric, obj) | ||||
|             metric_for_logging["train_loss"] = sklearn_metric_loss_score( | ||||
|  | ||||
| @ -1,4 +1,5 @@ | ||||
| from openml.exceptions import OpenMLServerException | ||||
| from requests.exceptions import ChunkedEncodingError | ||||
| 
 | ||||
| 
 | ||||
| def test_automl(budget=5, dataset_format="dataframe", hpo_method=None): | ||||
| @ -8,8 +9,8 @@ def test_automl(budget=5, dataset_format="dataframe", hpo_method=None): | ||||
|         X_train, X_test, y_train, y_test = load_openml_dataset( | ||||
|             dataset_id=1169, data_dir="test/", dataset_format=dataset_format | ||||
|         ) | ||||
|     except OpenMLServerException: | ||||
|         print("OpenMLServerException raised") | ||||
|     except (OpenMLServerException, ChunkedEncodingError) as e: | ||||
|         print(e) | ||||
|         return | ||||
|     """ import AutoML class from flaml package """ | ||||
|     from flaml import AutoML | ||||
| @ -84,8 +85,8 @@ def test_mlflow(): | ||||
|         X_train, X_test, y_train, y_test = load_openml_task( | ||||
|             task_id=7592, data_dir="test/" | ||||
|         ) | ||||
|     except OpenMLServerException: | ||||
|         print("OpenMLServerException raised") | ||||
|     except (OpenMLServerException, ChunkedEncodingError) as e: | ||||
|         print(e) | ||||
|         return | ||||
|     """ import AutoML class from flaml package """ | ||||
|     from flaml import AutoML | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Chi Wang
						Chi Wang